论文部分内容阅读
本文提出了一种利用k均值聚类算法确定RBF神经网络径向基函数数目、函数中心及宽度,输出层权值由线性方程组确定,而网络参数的优化采用梯度下降法的网络设计方法。为了解决学习样本数据的有限性、RBF网络泛化能力较差和容易出现过拟合等问题,在网络训练中采用了基于交叉验证的归一化网络训练方法。通过仿真实验表明该方法训练所得的网络泛化能力及分类的准确率明显提高,并有效避免了过拟合问题。