论文部分内容阅读
针对最小二乘支持向量机(LSSVM)处理大数据集时确定最优模型参数耗时长、占内存大的问题,提出了一种基于人工免疫算法的参数寻优方法。通过分析LSSVM模型参数对分类准确率的影响发现,存在多种参数组合,使得分类准确率相同;当其中一个参数固定,另外一个参数在某些范围内变化取值时,它们的组合并不影响分类的准确率。将LSSVM模型参数作为抗体的基因设计了抗体的编码方案,利用人工免疫算法对LSSVM参数优化搜索。仿真结果表明,与使用交叉验证和网格搜索方法相比,提出的LSSVM参数优化算法在不降低分类准确率的前