论文部分内容阅读
摘 要:陜南是驰名中外的石煤赋存区,石煤中伴生有多种元素。通过测试石煤中磷元素的含量,发现陕南石煤样品中磷元素含量普遍较高(139.1~2 946.8 μg/g),远高于中国煤中磷均值,富集磷元素特征明显,并且石煤灰样普遍高于对应原石煤样中磷元素含量。利用浸泡实验模拟了四种条件下(超纯水、酸性溶液、碱性溶液、矿井水)石煤及煤灰中磷元素的浸出(迁移)过程,实验周期长达12个月,计算了不同类型样品和浸泡条件下的磷元素浸出率。结果显示:酸性溶液对于石煤样品中磷元素有较高的浸出率,普遍高于其他三种类型溶液,矿井水溶液的磷浸出率次之,超纯水和碱性溶液的磷浸出率微弱,指示碱性条件有抑制石煤样中磷元素浸出的趋势。石煤灰样品在不同类型溶液条件下磷元素的浸出率特征也是在酸性溶液中比较高,矿井水溶液次之。与不同溶液石煤样磷元素浸出率相比,石煤灰样在碱性溶液和矿井水溶液中略有增高。关键词:石煤;磷;迁移规律;浸泡实验;浸出率中图分类号:P 595
文献标志码:A
文章编号:1672-9315(2021)02-0316-07
DOI:10.13800/j.cnki.xakjdxxb.2021.0216开放科学(资源服务)标识码(OSID):
Migration law of Phosphorus in stone coal and
coal ash in southern Shaanxi province
ZHANG Weiguo1,2,3,HOU Enke1,2, LI Jun4, LIU Xiaoyu1,ZUO Xin1,FENG Xinyue1
(1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China;
2. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054,China;
3.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi’an 710021,China;
4.Shenmu Zhangjiamao Mining Co.,Ltd.,Shaanxi Coal Industry Group,Shenmu 719316,China)
Abstract:Southern Shaanxi Province is a wellknown stone coal storage area in China. There are many elements associated with stone coal.By testing the content of phosphorus in stone coal, it is found that the content of phosphorus in the stone samples in southern Shaanxi is generally higher (139.1~2 946.8 μg/g), much higher than the average value of phosphorus in Chinese coal. And the stone coal ash sample is generally higher than the phosphorus content in the corresponding original stone coal sample. The leaching experiment was used to simulate the leaching(migration) process of phosphorus in stone coal and coal ash under four conditions (ultrapure water, acidic solution, alkaline solution, mine water). The experiment lasted as long as 12 months, and the calculation was carried out for phosphorus leaching rate for type samples and soaking conditions. The results show that the acidic solution has a higher leaching rate for phosphorus in stone samples, which is generally higher than the other three types of solutions. The phosphorus leaching rate of the mine aqueous solution is the second, and the phosphorus leaching rate of ultrapure water and alkaline solution is weaker. It indicated that the alkaline condition has a tendency to inhibit the leaching of phosphorus in the stone coal sample. The leaching rate characteristics of phosphorus in the sample of different types of solution are also higher in the acidic solution, followed by the aqueous solution of the mine. Compared with the phosphorus leaching rate of different solution stone coal samples, the stone coal ash sample slightly increased in the alkaline solution and the mine aqueous solution.Key words:stone coal;phosphorus;migration law;soaking experiment;leaching rate 0 引 言随着新能源、可再生能源、水电、核电的多元发展与推广应用,有可能使煤炭在中国一次能源中的消费比重出现下降,但却不足以改变我国以煤炭为主体的能源结构。煤炭作为一种工业燃料,被广泛地应用于生产,推动了人类社会和工业的向前发展[1]。在煤炭的开采、洗选、运输、堆放及利用过程中,煤中部分元素会向外界环境发生不同程度和形式的迁移,其中有害元素会对环境和人体健康造成严重危害,从而引发一系列的科学问题[2-5]。因此,评价煤及其燃烧产物(煤灰)的环境效应是非常有意义和必要的[6-7]。评价的核心就是讨论元素在自然淋滤状态下向外界环境(尤其是水环境)释放的量及难易程度。关于煤中有害元素的迁移及环境影响评价,众多学者做了大量工作,研究主要集中在腐植煤、飞灰、底灰、矸石等在不同条件下(酸性、碱性)的迁移特性及影响因素,关注的元素主要有As,Se,Hg,Cr,Cd,Ni,Zn等[8-14]。石煤是一种生成于古老地层的劣质腐泥煤,在我国南方广泛分布,以南秦岭最为丰富[15]。石煤具有高灰、高硫、低热值、伴生元素多等特点[16-17],因其伴生多种有害元素而备受关注[18-19]。陕西省南部地区是驰名中外的石煤资源赋存区,主要的含石煤地层为下寒武统的鲁家坪组。陕南石煤中主要伴生有钒、钼、镓、磷、铬、铅、镍等元素[20-23]。石煤虽然存在发热量低、有害元素高等缺点,但是在资源匮乏的地区具有久远的开采和使用记录。虽然石煤的开采量和使用量不足为惧,但是由于其有害元素含量高、种类多,潜在的危害仍然不容小觑。目前有关石煤中磷元素的迁移转化规律研究相对薄弱,以往研究主要集中在钒的赋存状态和提取工艺方面[24-25]。磷是自然界中含量较为丰富的非金属元素,也是人体必需元素。我国煤中磷含量变化较大,分布不平衡,绝大部分煤中磷含量低于500 μg/g,为低磷煤或特低磷煤[26]。有关煤中磷的深加工利用,不少学者作了探索性研究,前景一般[27-28]。煤中磷属于中等水平敏感度的环境影响元素[29]。我国煤炭的开采量和利用量十分巨大,随之产生的磷污染可想而知。石煤中普遍含有高含量的磷元素,尤其是石煤提钒废液中磷含量超标,对自然界水体污染问题突出[30]。因此,查明石煤中磷元素的迁移转化规律,有助于石煤的清洁开发和环境保护。
1 样品采集与实验
1.1 样品采集用于研究的石煤样品主要取自开采历史悠久的陕西省安康市和汉中市辖区,采样点分布于安康市紫阳县、平利县、镇坪县和汉中市镇巴县境内(图1)。共采集12个石煤样,其中HYG采集了2个石煤样品,其中HYGNC为新鲜样品,HYGOC为在室外状态下暴露一年后的样品,同时在WJW,HYG,BSX分别采集3个矿井水样。采回的石煤样根据堆锥四分法进行缩分,破碎并研磨,使样品粒度达到200目以下,一部分石煤样灰化成煤灰样。“-C”表示样品类型为煤样,“-A”表示样品类型为煤灰样。样品经微波消解后用Thermo Fisher公司X系列Ⅱ型电感耦合等离子体质谱仪(ICPMS)进行分析,测得样品中P元素含量,结果见表1。
2 实验
2.1 溶液制备超纯水(CS)使用德国Millipore DirectQ5超纯水系统制备,水质输出标准18.21 MΩ;酸性溶液(PH5)利用浓硫酸与硝酸制备,二者比例为4∶1,调节溶液pH值到5;碱性溶液(PH8)利用氢氧化钠制备,调节溶液pH值到8;矿井水溶液(KJS)是将收集的3个采样点的矿井排出水按1∶1体积比混合而得。
2.2 浸泡实验浸泡实验是模拟自然状态下固液间元素迁移
扩散的常用手段[31-32],本次研究实验方法具体如下。
准确称量1 g样品,将样品全部转移至50 mL离心管中,每个样品称4份,分别转移至4个离心管中。同一样品的4个离心管中分别倒入50 mL的超纯水(CS)、酸性溶液(PH5)、碱性溶液(PH8)和矿井水溶液(KJS),拧好离心管盖并摇匀。第一个月,每天进行一次摇匀,之后每月摇匀一次,持续12个月。浸泡实验结束后,将离心管放入离心机进行离心(5 000 r/min),离心后取上清液待测,利用ICP等离子体发射光谱仪测定P元素含量。
2.3 浸出率计算浸出率指在浸泡实验中被浸泡样品流失的元素含量占比,单位%。用溶液中元素绝对含量与浸泡前原样品中元素绝对含量的百分比值表示,元素浸出率计算结果见表2。
3 结果分析以往资料显示,大部分石煤中含有高含量的磷元素,本次研究采集的陕南石煤样品中磷元素含量普遍较高,含量在139.1到2 946.8 μg/g之间,远高于DAI等2012年统计的中国煤中磷均值(250 μg/g)[33]。计算陕南石煤中磷含量与中国煤均值的比值,结果显示绝大部分石煤样品中磷含量超过了中国煤中磷均值(MTSC,YJC,BSXC除外),一半以上达到了中国煤中磷均值5倍以上,4个样品达到了中国煤中磷均值10倍以上,最高为11.8倍(BXC),陕南石煤中含有高含量的磷元素特征显而易见(图2)。石煤灰中磷元素含量在780.0到4 718.2 μg/g之间,普遍高于对应原石煤样中磷元素含量。综合以上,陕南石煤中磷元素含量超高,总体上具有燃烧后向石煤灰中富集(迁移)的趋势。
根据测定在浸泡实验后不同溶液中磷元素的含量,计算了磷元素浸出率(表2)。结果显示,在石煤样品中,酸性溶液(PH5)对于磷元素有较高的浸出率(1.20%~39.10%),普遍高于其他3种类型溶液,矿井水溶液(KJS)的磷浸出率次之,其他2种类型溶液磷浸出率微弱,显示碱性条件有抑制石煤样中磷元素浸出的趋势。在石煤灰样品中,酸性溶液(PH5)、碱性溶液(PH8)和矿井水溶液(KJS)对磷元素呈现不同程度的浸出特征。酸性溶液对磷元素的浸出率为2.11%到45.74%,碱性溶液对磷元素的浸出率为未检出到3.58%,矿井水溶液对磷元素的浸出率为未检出到7.61%。石煤灰样品在不同类型溶液条件下磷元素的浸出率總体特征为在酸性溶液中比较高,矿井水溶液次之。与不同溶液石煤样磷元素浸出率相比,石煤灰样在碱性溶液和矿井水溶液中略有增高。浸出率是相对概念,前文已经进行了分析讨论,表3列出了石煤及煤灰样在不同溶液条件下的磷元素浸出量,WJWC,HYGNA,HYGOA,HYLA,BXA在酸性溶液下浸出量超过1 000 μg/g。进一步对比分析石煤及对应石煤灰样品在不同类型溶液中磷元素的浸出特征差异性。其中MTS和MH这2组样品,无论石煤样还是石煤灰样在超纯水和碱性溶液中均无浸出,在酸性溶液中浸出率较高,且石煤样高于石煤灰样,在矿井水溶液中二者浸出率相当(图3(a))。WJW和BX这2组样品,石煤样品仅在酸性溶液中有浸出,而对应石煤灰样在4种类型溶液中普遍浸出了磷元素,石煤灰样的磷浸出率明显高于石煤样品,并且磷元素浸出率遵循酸性溶液>碱性溶液>矿井水溶液>超纯水;RCX组样品表现为从石煤向煤灰转化过程中,在酸性溶液和矿井水溶液中磷元素的浸出率有升高的趋势,而在矿井水溶液中呈下降趋势(图3(b))。HYL,HYGN,HYGO,YDH这4组样品,石煤及石煤灰样的共同特征是在酸性溶液中的磷浸出率较高且相近,从石煤向煤灰转化过程中,在碱性溶液和矿井水溶液中磷元素的浸出率有升高的趋势(图3(c))。其余几组样品的磷元素浸出特征规律不明显,YJ石煤样品在4种类型溶液中均未检出,对应煤灰样在酸性溶液和碱性溶液略有浸出,XA石煤及煤灰样在酸性溶液中均有较高的浸出率,其他溶液浸出微弱,BSX煤灰样在碱性溶液中浸出率较高。 4 结 论
1)陕南石煤样品中磷元素含量普遍较高(139.1~2 496.8 μg/g),远高于中国煤中磷均值,一半以上的样品达到了中国煤中磷均值5倍以上,4个样品达到了中国煤中磷均值10倍以上,最高为11.8倍(BXC),陕南石煤中含有高含量的磷元素特征明显。2)石煤灰样普遍高于对应原石煤样中磷元素含量,总体上具有燃烧后向石煤灰中富集(迁移)的趋势。3)酸性溶液对于石煤样品中磷元素有较高的浸出率,普遍高于其他3种类型溶液,矿井水溶液的磷浸出率次之,其他2种类型溶液磷浸出率微弱,指示碱性条件有抑制石煤样中磷元素浸出的趋势。石煤灰样品在不同类型溶液条件下磷元素的浸出率特征也是在酸性溶液中比较高,矿井水溶液次之。与不同溶液石煤样磷元素浸出率相比,石煤灰样在碱性溶液和矿井水溶液中略有增高。
参考文献(References):
[1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960.
XIE Heping,WU Lixin,ZHENG Dezhi.China’s energy consumption and coal demand forecast in 2025[J].Journal of China Coal Society,2019,44(7):1949-1960.
[2]刘桂建.兖州矿区煤中微量元素的环境地球化学研究[D].徐州:中国矿业大学,1999.
LIU Guijian.Study on environmental geochemistry of coal micronutrient in Yanzhou Mining area[D].Xuzhou:China university of mining and technology,1999.
[3]DAI S F,XIE P P,JIA S H,et al.Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:genetic implications from geochemical and mineralogical data[J].Ore Geology Reviews,2017,80:1-17.
[4]DAI S F,TIAN L W,CHOU C L,et al.Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate Xuan Wei,Yunnan,China:Occurrence and origin of quartz and chamosite[J].International Journal of Coal Geology,2008,76:318-327.
[5]張卫国,侯恩科,杨建业,等.石煤中钒-钼-硒等伴生元素研究[J].稀有金属,2019,43(10):1092-1102.
ZHANG Weiguo,HOU Enke,YANG Jianye,et al.Studies on the Associated elements such as Vanadium,molybdenum and selenium in stone coal[J].Rare Metals,2019,43(10):1092-1102.
[6]SWAINE D J,GOODARZI F.Environmental aspects of trace elements in coal[J].Kluwer Academic Publishers,1995,3(12):5-16.
[7]任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006.
[8]王运泉,任德贻,谢洪波.燃煤过程中微量元素的分布及逸散规律[J].煤矿环境与保护,1995,10(6):25-28.
WANG Yunquan,REN Deyi,XIE Hongbo.The law of micronutrient distribution and emission in coal combustion process[J].Coal Mine Environment and protection,1995,10(6):25-28.
[9]FINKELMAN R B.GROSS P M K.The types of data needed for assessing the environmental and human health impacts of coal[J].International Journal of Coal Geology,1999,40(2-3):91-101.
[10]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学研究总院,2003.
BAI Xiangfei.Experimental study on the distribution and migration of trace elements in coal in China[D].Beijing:General Institute of Coal Science,2003.
[11]聂文杰,张蕾,沙响玲,等.NiO/γ-Al2O3单金属催化剂的制备及脱硫性能研究[J].西安科技大学学报,2016,36(5):675-679. NIE Wenjie,ZHANG Lei,SHA Xiangling,et al.Preparation and desulphurization of NiO/-Al2O3 monometallic catalyst[J].Journal of Xi’an University of Science and Technology,2016,36(5):675-679.
[12]刘永娟,张蕾,张磊,等.湿法氧化脱硝并联与串联工艺对比研究[J].西安科技大学学报,2016,36(6):857-862.
LIU Yongjuan,ZHANG Lei,ZHANG Lei,et al.A comparative study on parallel and series processes of wet oxidation denitrification[J].Journal of Xi’an University of Science and Technology,2016,36(6):857-862.
[13]PETER A L J,VIRARAGHAVAN T.Thallium:a review of public health and environmental concerns[J].Environment International,2005,31(4):493-501.
[14]ETSCHMANN B,LIU W,LI K,et al.Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits[J].Chemical Geology,2017,46 (3):29-49.
[15]李有禹.湖南下寒武统石煤中的镍钼铂族元素的地球化学特征[J].煤炭学报,1996,21(3):38-41.
LI Youyu,Geochemical characteristics of Ni Mo Pt group elements in the Lower Cambrian bone coal in Hunan province[J].Journal of China Coal Society,1996,21(3):38-41.
[16]张爱云,潘治贵,翁成敏,等.杨家堡含钒石煤的物质成分和钒的赋存状態及配分的研究[J].地球科学,1982,16(1):193-206,244.
ZHANG Aiyun,PAN Zhigui,WENG Chengmin,et al.Study on the material composition of vanadium bearing stone coal in Yangjiapu and its occurrence state and distribution[J].Earth Science,1982,16(1):193-206,244.
[17]梁子豪.浙西北下寒武统石煤及石煤分布区植物中钒的分布特征[J].地球化学,1990,3(1):54-58.
LIANG Zihao.Distribution characteristics of vanadium in plants from the Lower Cambrian stone coal and stone coal distribution area in northwestern Zhejiang[J].Geochemistry,1990,3(1):54-58.
[18]雒昆利,陈德岭,葛岭梅.陕西古生界黑色岩系及煤系共伴生矿产[M].西安:西北大学出版社,1994.
[19]胡运森,曹文发,刘军,等.陕西南部燃煤型砷中毒及环境砷水平流行病学研究[J].中国地方病学杂志,2003,22(4):47-49.
HU Yunsen,CAO Wenfa,LIU Jun,et al.Epidemiological research of coalburning pollution arseniasis and the level of arsenical in environment in south of Shaanxi province[J].Chinese Journal of Endemic Diseases,2003,22(4):47-49.
[20]王国兴.安康将成为陕西的“攀枝花”——陕南石煤资源综合利用开发调查[J].现代企业,2012(8):26-27.
WANG Guoxing.Ankang will become the “Panzhihua” of Shaanxiinvestigation on comprehensive utilization and exploitation of stone coal resources in southern Shaanxi[J].Modern Enterprise,2012(8):26-27.
[21]储少军,章俊.石煤资源利用技术的现状及展望[J].铁合金,2014,45(3):60-64.
CHU Shaojun,ZHANG Jun.Latest development and prospect of process for utilizing stone coal[J].FerroAlloys,2014,45(3):60-64.
[22]杨学存,马合川.安康石煤特征及其综合利用[J].陕西煤炭,2013,32(1):11-13. YANG Xuecun,MA Hechuan.Thought on the characteristics and comprehensive utilization of stone coal[J].Shaanxi Coal,2013,32(1):11-13.
[23]刘佳鹏,孙伟,王丽,等.陕西某石煤钒矿的新型选矿工艺研究[J].有色金属(选矿部分),2015,10(2):58-63.
LIU Jiapeng,SUN Wei,WANG Li,et al.Study on a new beneficiation technology of a vanadiumbearing stone coal ore in Shaanxi[J].Nonferrous Metals Mineral Processing Section,2015,10(2):58-63.
[24]王丽,张庆鹏,孙伟.陕西商洛石煤中钒的赋存状态与工艺矿物学研究[J].矿物学报,2017,37(Z1):29-35.
WANG Li,ZHANG Qingpeng,SUN Wei.Research on occurrence of vanadium in stone coal deposit at Shangluo city,Shanxi province,China[J].Journal of Mineralogy,2017,37(Z1):29-35.
[25]HE D,FENG Q,ZHANG G.An environmentallyfriendly technology of vanadium extraction from stone coal[J].Minerals Engineering,2007,20(12):1184-1186.
[26]涂华,李文华,白向飞.中国煤中磷的分布特征[J].燃料化学学报,2011,39(9):641-646.
TU Hua,LI Wenhua,BAI Xiangfei.Distribution characteristics of phosphorus in Chinese coals[J].Journal of Fuel Chemistry,2011,39(9):641-646.
[27]周俊生,田娟.贵州煤磷化工现状及发展前景简析[J].山东化工,2012,41(8):24-25.
ZHOU Junsheng,TIAN Juan.Brief analysis of present situation and development prospect of Guizhou coal phosphorus chemical industry[J].Shandong Chemical Industry,2012,41(8):24-25.
[28]段付岗.煤化工和磷复肥相关系统的联产改造[J].煤化工,2013,41(6):31-33.
DUAN Fugang.Coproduction transformation of coal chemical industry and Phosphate Compound Fertilizer Related System[J].Coal Chemical Industry,2013,41(6):31-33.
[29]陈鹏.中国煤炭性质、分类和利用[M].北京:科学出版社,2007.
[30]黄鹏,林璠,刘爽,等.我國石煤提钒废水的处理现状与展望[J].化工环保,2016,36(1):22-25.
HUANG Peng,LIN Fan,LIU Shuang,et al.Present situation and prospect of vanadium recovery wastewater from stone coal in China[J].Environmental Protection in chemical industry,2016,36(1):22-25.
[31]张卫国,杨建业,侯恩科.超高有机硫煤中微量元素的地球化学规律[J].西安科技大学学报,2019,39(1):56-62.
ZHANG Weiguo,YANG Jianye,HOU Enke.Geochemical regularity of trace elements in superhigh organic sulfur coal[J].Journal of Xi’an University of Science and Technology,2019,39(1):56-62.
[32]张军营,郑楚光,刘晶,等.煤灰中微量重金属元素的迁移性实验研究[J].华中科技大学学报(自然科学版),2002,30(20):83-85.
ZHANG Junying,ZHENG Chuguang,LIU Jing,et al.Experimental study on the migration of trace heavy metals in coal ash[J].Journal of Huazhong University of Science and Technology (natural science edition),2002,30(20):83-85.
[33]DAI S F,REN D Y,CHOU C L.Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94:3-21.
文献标志码:A
文章编号:1672-9315(2021)02-0316-07
DOI:10.13800/j.cnki.xakjdxxb.2021.0216开放科学(资源服务)标识码(OSID):
Migration law of Phosphorus in stone coal and
coal ash in southern Shaanxi province
ZHANG Weiguo1,2,3,HOU Enke1,2, LI Jun4, LIU Xiaoyu1,ZUO Xin1,FENG Xinyue1
(1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China;
2. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054,China;
3.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi’an 710021,China;
4.Shenmu Zhangjiamao Mining Co.,Ltd.,Shaanxi Coal Industry Group,Shenmu 719316,China)
Abstract:Southern Shaanxi Province is a wellknown stone coal storage area in China. There are many elements associated with stone coal.By testing the content of phosphorus in stone coal, it is found that the content of phosphorus in the stone samples in southern Shaanxi is generally higher (139.1~2 946.8 μg/g), much higher than the average value of phosphorus in Chinese coal. And the stone coal ash sample is generally higher than the phosphorus content in the corresponding original stone coal sample. The leaching experiment was used to simulate the leaching(migration) process of phosphorus in stone coal and coal ash under four conditions (ultrapure water, acidic solution, alkaline solution, mine water). The experiment lasted as long as 12 months, and the calculation was carried out for phosphorus leaching rate for type samples and soaking conditions. The results show that the acidic solution has a higher leaching rate for phosphorus in stone samples, which is generally higher than the other three types of solutions. The phosphorus leaching rate of the mine aqueous solution is the second, and the phosphorus leaching rate of ultrapure water and alkaline solution is weaker. It indicated that the alkaline condition has a tendency to inhibit the leaching of phosphorus in the stone coal sample. The leaching rate characteristics of phosphorus in the sample of different types of solution are also higher in the acidic solution, followed by the aqueous solution of the mine. Compared with the phosphorus leaching rate of different solution stone coal samples, the stone coal ash sample slightly increased in the alkaline solution and the mine aqueous solution.Key words:stone coal;phosphorus;migration law;soaking experiment;leaching rate 0 引 言随着新能源、可再生能源、水电、核电的多元发展与推广应用,有可能使煤炭在中国一次能源中的消费比重出现下降,但却不足以改变我国以煤炭为主体的能源结构。煤炭作为一种工业燃料,被广泛地应用于生产,推动了人类社会和工业的向前发展[1]。在煤炭的开采、洗选、运输、堆放及利用过程中,煤中部分元素会向外界环境发生不同程度和形式的迁移,其中有害元素会对环境和人体健康造成严重危害,从而引发一系列的科学问题[2-5]。因此,评价煤及其燃烧产物(煤灰)的环境效应是非常有意义和必要的[6-7]。评价的核心就是讨论元素在自然淋滤状态下向外界环境(尤其是水环境)释放的量及难易程度。关于煤中有害元素的迁移及环境影响评价,众多学者做了大量工作,研究主要集中在腐植煤、飞灰、底灰、矸石等在不同条件下(酸性、碱性)的迁移特性及影响因素,关注的元素主要有As,Se,Hg,Cr,Cd,Ni,Zn等[8-14]。石煤是一种生成于古老地层的劣质腐泥煤,在我国南方广泛分布,以南秦岭最为丰富[15]。石煤具有高灰、高硫、低热值、伴生元素多等特点[16-17],因其伴生多种有害元素而备受关注[18-19]。陕西省南部地区是驰名中外的石煤资源赋存区,主要的含石煤地层为下寒武统的鲁家坪组。陕南石煤中主要伴生有钒、钼、镓、磷、铬、铅、镍等元素[20-23]。石煤虽然存在发热量低、有害元素高等缺点,但是在资源匮乏的地区具有久远的开采和使用记录。虽然石煤的开采量和使用量不足为惧,但是由于其有害元素含量高、种类多,潜在的危害仍然不容小觑。目前有关石煤中磷元素的迁移转化规律研究相对薄弱,以往研究主要集中在钒的赋存状态和提取工艺方面[24-25]。磷是自然界中含量较为丰富的非金属元素,也是人体必需元素。我国煤中磷含量变化较大,分布不平衡,绝大部分煤中磷含量低于500 μg/g,为低磷煤或特低磷煤[26]。有关煤中磷的深加工利用,不少学者作了探索性研究,前景一般[27-28]。煤中磷属于中等水平敏感度的环境影响元素[29]。我国煤炭的开采量和利用量十分巨大,随之产生的磷污染可想而知。石煤中普遍含有高含量的磷元素,尤其是石煤提钒废液中磷含量超标,对自然界水体污染问题突出[30]。因此,查明石煤中磷元素的迁移转化规律,有助于石煤的清洁开发和环境保护。
1 样品采集与实验
1.1 样品采集用于研究的石煤样品主要取自开采历史悠久的陕西省安康市和汉中市辖区,采样点分布于安康市紫阳县、平利县、镇坪县和汉中市镇巴县境内(图1)。共采集12个石煤样,其中HYG采集了2个石煤样品,其中HYGNC为新鲜样品,HYGOC为在室外状态下暴露一年后的样品,同时在WJW,HYG,BSX分别采集3个矿井水样。采回的石煤样根据堆锥四分法进行缩分,破碎并研磨,使样品粒度达到200目以下,一部分石煤样灰化成煤灰样。“-C”表示样品类型为煤样,“-A”表示样品类型为煤灰样。样品经微波消解后用Thermo Fisher公司X系列Ⅱ型电感耦合等离子体质谱仪(ICPMS)进行分析,测得样品中P元素含量,结果见表1。
2 实验
2.1 溶液制备超纯水(CS)使用德国Millipore DirectQ5超纯水系统制备,水质输出标准18.21 MΩ;酸性溶液(PH5)利用浓硫酸与硝酸制备,二者比例为4∶1,调节溶液pH值到5;碱性溶液(PH8)利用氢氧化钠制备,调节溶液pH值到8;矿井水溶液(KJS)是将收集的3个采样点的矿井排出水按1∶1体积比混合而得。
2.2 浸泡实验浸泡实验是模拟自然状态下固液间元素迁移
扩散的常用手段[31-32],本次研究实验方法具体如下。
准确称量1 g样品,将样品全部转移至50 mL离心管中,每个样品称4份,分别转移至4个离心管中。同一样品的4个离心管中分别倒入50 mL的超纯水(CS)、酸性溶液(PH5)、碱性溶液(PH8)和矿井水溶液(KJS),拧好离心管盖并摇匀。第一个月,每天进行一次摇匀,之后每月摇匀一次,持续12个月。浸泡实验结束后,将离心管放入离心机进行离心(5 000 r/min),离心后取上清液待测,利用ICP等离子体发射光谱仪测定P元素含量。
2.3 浸出率计算浸出率指在浸泡实验中被浸泡样品流失的元素含量占比,单位%。用溶液中元素绝对含量与浸泡前原样品中元素绝对含量的百分比值表示,元素浸出率计算结果见表2。
3 结果分析以往资料显示,大部分石煤中含有高含量的磷元素,本次研究采集的陕南石煤样品中磷元素含量普遍较高,含量在139.1到2 946.8 μg/g之间,远高于DAI等2012年统计的中国煤中磷均值(250 μg/g)[33]。计算陕南石煤中磷含量与中国煤均值的比值,结果显示绝大部分石煤样品中磷含量超过了中国煤中磷均值(MTSC,YJC,BSXC除外),一半以上达到了中国煤中磷均值5倍以上,4个样品达到了中国煤中磷均值10倍以上,最高为11.8倍(BXC),陕南石煤中含有高含量的磷元素特征显而易见(图2)。石煤灰中磷元素含量在780.0到4 718.2 μg/g之间,普遍高于对应原石煤样中磷元素含量。综合以上,陕南石煤中磷元素含量超高,总体上具有燃烧后向石煤灰中富集(迁移)的趋势。
根据测定在浸泡实验后不同溶液中磷元素的含量,计算了磷元素浸出率(表2)。结果显示,在石煤样品中,酸性溶液(PH5)对于磷元素有较高的浸出率(1.20%~39.10%),普遍高于其他3种类型溶液,矿井水溶液(KJS)的磷浸出率次之,其他2种类型溶液磷浸出率微弱,显示碱性条件有抑制石煤样中磷元素浸出的趋势。在石煤灰样品中,酸性溶液(PH5)、碱性溶液(PH8)和矿井水溶液(KJS)对磷元素呈现不同程度的浸出特征。酸性溶液对磷元素的浸出率为2.11%到45.74%,碱性溶液对磷元素的浸出率为未检出到3.58%,矿井水溶液对磷元素的浸出率为未检出到7.61%。石煤灰样品在不同类型溶液条件下磷元素的浸出率總体特征为在酸性溶液中比较高,矿井水溶液次之。与不同溶液石煤样磷元素浸出率相比,石煤灰样在碱性溶液和矿井水溶液中略有增高。浸出率是相对概念,前文已经进行了分析讨论,表3列出了石煤及煤灰样在不同溶液条件下的磷元素浸出量,WJWC,HYGNA,HYGOA,HYLA,BXA在酸性溶液下浸出量超过1 000 μg/g。进一步对比分析石煤及对应石煤灰样品在不同类型溶液中磷元素的浸出特征差异性。其中MTS和MH这2组样品,无论石煤样还是石煤灰样在超纯水和碱性溶液中均无浸出,在酸性溶液中浸出率较高,且石煤样高于石煤灰样,在矿井水溶液中二者浸出率相当(图3(a))。WJW和BX这2组样品,石煤样品仅在酸性溶液中有浸出,而对应石煤灰样在4种类型溶液中普遍浸出了磷元素,石煤灰样的磷浸出率明显高于石煤样品,并且磷元素浸出率遵循酸性溶液>碱性溶液>矿井水溶液>超纯水;RCX组样品表现为从石煤向煤灰转化过程中,在酸性溶液和矿井水溶液中磷元素的浸出率有升高的趋势,而在矿井水溶液中呈下降趋势(图3(b))。HYL,HYGN,HYGO,YDH这4组样品,石煤及石煤灰样的共同特征是在酸性溶液中的磷浸出率较高且相近,从石煤向煤灰转化过程中,在碱性溶液和矿井水溶液中磷元素的浸出率有升高的趋势(图3(c))。其余几组样品的磷元素浸出特征规律不明显,YJ石煤样品在4种类型溶液中均未检出,对应煤灰样在酸性溶液和碱性溶液略有浸出,XA石煤及煤灰样在酸性溶液中均有较高的浸出率,其他溶液浸出微弱,BSX煤灰样在碱性溶液中浸出率较高。 4 结 论
1)陕南石煤样品中磷元素含量普遍较高(139.1~2 496.8 μg/g),远高于中国煤中磷均值,一半以上的样品达到了中国煤中磷均值5倍以上,4个样品达到了中国煤中磷均值10倍以上,最高为11.8倍(BXC),陕南石煤中含有高含量的磷元素特征明显。2)石煤灰样普遍高于对应原石煤样中磷元素含量,总体上具有燃烧后向石煤灰中富集(迁移)的趋势。3)酸性溶液对于石煤样品中磷元素有较高的浸出率,普遍高于其他3种类型溶液,矿井水溶液的磷浸出率次之,其他2种类型溶液磷浸出率微弱,指示碱性条件有抑制石煤样中磷元素浸出的趋势。石煤灰样品在不同类型溶液条件下磷元素的浸出率特征也是在酸性溶液中比较高,矿井水溶液次之。与不同溶液石煤样磷元素浸出率相比,石煤灰样在碱性溶液和矿井水溶液中略有增高。
参考文献(References):
[1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960.
XIE Heping,WU Lixin,ZHENG Dezhi.China’s energy consumption and coal demand forecast in 2025[J].Journal of China Coal Society,2019,44(7):1949-1960.
[2]刘桂建.兖州矿区煤中微量元素的环境地球化学研究[D].徐州:中国矿业大学,1999.
LIU Guijian.Study on environmental geochemistry of coal micronutrient in Yanzhou Mining area[D].Xuzhou:China university of mining and technology,1999.
[3]DAI S F,XIE P P,JIA S H,et al.Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:genetic implications from geochemical and mineralogical data[J].Ore Geology Reviews,2017,80:1-17.
[4]DAI S F,TIAN L W,CHOU C L,et al.Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate Xuan Wei,Yunnan,China:Occurrence and origin of quartz and chamosite[J].International Journal of Coal Geology,2008,76:318-327.
[5]張卫国,侯恩科,杨建业,等.石煤中钒-钼-硒等伴生元素研究[J].稀有金属,2019,43(10):1092-1102.
ZHANG Weiguo,HOU Enke,YANG Jianye,et al.Studies on the Associated elements such as Vanadium,molybdenum and selenium in stone coal[J].Rare Metals,2019,43(10):1092-1102.
[6]SWAINE D J,GOODARZI F.Environmental aspects of trace elements in coal[J].Kluwer Academic Publishers,1995,3(12):5-16.
[7]任德贻,赵峰华,代世峰,等.煤的微量元素地球化学[M].北京:科学出版社,2006.
[8]王运泉,任德贻,谢洪波.燃煤过程中微量元素的分布及逸散规律[J].煤矿环境与保护,1995,10(6):25-28.
WANG Yunquan,REN Deyi,XIE Hongbo.The law of micronutrient distribution and emission in coal combustion process[J].Coal Mine Environment and protection,1995,10(6):25-28.
[9]FINKELMAN R B.GROSS P M K.The types of data needed for assessing the environmental and human health impacts of coal[J].International Journal of Coal Geology,1999,40(2-3):91-101.
[10]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学研究总院,2003.
BAI Xiangfei.Experimental study on the distribution and migration of trace elements in coal in China[D].Beijing:General Institute of Coal Science,2003.
[11]聂文杰,张蕾,沙响玲,等.NiO/γ-Al2O3单金属催化剂的制备及脱硫性能研究[J].西安科技大学学报,2016,36(5):675-679. NIE Wenjie,ZHANG Lei,SHA Xiangling,et al.Preparation and desulphurization of NiO/-Al2O3 monometallic catalyst[J].Journal of Xi’an University of Science and Technology,2016,36(5):675-679.
[12]刘永娟,张蕾,张磊,等.湿法氧化脱硝并联与串联工艺对比研究[J].西安科技大学学报,2016,36(6):857-862.
LIU Yongjuan,ZHANG Lei,ZHANG Lei,et al.A comparative study on parallel and series processes of wet oxidation denitrification[J].Journal of Xi’an University of Science and Technology,2016,36(6):857-862.
[13]PETER A L J,VIRARAGHAVAN T.Thallium:a review of public health and environmental concerns[J].Environment International,2005,31(4):493-501.
[14]ETSCHMANN B,LIU W,LI K,et al.Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits[J].Chemical Geology,2017,46 (3):29-49.
[15]李有禹.湖南下寒武统石煤中的镍钼铂族元素的地球化学特征[J].煤炭学报,1996,21(3):38-41.
LI Youyu,Geochemical characteristics of Ni Mo Pt group elements in the Lower Cambrian bone coal in Hunan province[J].Journal of China Coal Society,1996,21(3):38-41.
[16]张爱云,潘治贵,翁成敏,等.杨家堡含钒石煤的物质成分和钒的赋存状態及配分的研究[J].地球科学,1982,16(1):193-206,244.
ZHANG Aiyun,PAN Zhigui,WENG Chengmin,et al.Study on the material composition of vanadium bearing stone coal in Yangjiapu and its occurrence state and distribution[J].Earth Science,1982,16(1):193-206,244.
[17]梁子豪.浙西北下寒武统石煤及石煤分布区植物中钒的分布特征[J].地球化学,1990,3(1):54-58.
LIANG Zihao.Distribution characteristics of vanadium in plants from the Lower Cambrian stone coal and stone coal distribution area in northwestern Zhejiang[J].Geochemistry,1990,3(1):54-58.
[18]雒昆利,陈德岭,葛岭梅.陕西古生界黑色岩系及煤系共伴生矿产[M].西安:西北大学出版社,1994.
[19]胡运森,曹文发,刘军,等.陕西南部燃煤型砷中毒及环境砷水平流行病学研究[J].中国地方病学杂志,2003,22(4):47-49.
HU Yunsen,CAO Wenfa,LIU Jun,et al.Epidemiological research of coalburning pollution arseniasis and the level of arsenical in environment in south of Shaanxi province[J].Chinese Journal of Endemic Diseases,2003,22(4):47-49.
[20]王国兴.安康将成为陕西的“攀枝花”——陕南石煤资源综合利用开发调查[J].现代企业,2012(8):26-27.
WANG Guoxing.Ankang will become the “Panzhihua” of Shaanxiinvestigation on comprehensive utilization and exploitation of stone coal resources in southern Shaanxi[J].Modern Enterprise,2012(8):26-27.
[21]储少军,章俊.石煤资源利用技术的现状及展望[J].铁合金,2014,45(3):60-64.
CHU Shaojun,ZHANG Jun.Latest development and prospect of process for utilizing stone coal[J].FerroAlloys,2014,45(3):60-64.
[22]杨学存,马合川.安康石煤特征及其综合利用[J].陕西煤炭,2013,32(1):11-13. YANG Xuecun,MA Hechuan.Thought on the characteristics and comprehensive utilization of stone coal[J].Shaanxi Coal,2013,32(1):11-13.
[23]刘佳鹏,孙伟,王丽,等.陕西某石煤钒矿的新型选矿工艺研究[J].有色金属(选矿部分),2015,10(2):58-63.
LIU Jiapeng,SUN Wei,WANG Li,et al.Study on a new beneficiation technology of a vanadiumbearing stone coal ore in Shaanxi[J].Nonferrous Metals Mineral Processing Section,2015,10(2):58-63.
[24]王丽,张庆鹏,孙伟.陕西商洛石煤中钒的赋存状态与工艺矿物学研究[J].矿物学报,2017,37(Z1):29-35.
WANG Li,ZHANG Qingpeng,SUN Wei.Research on occurrence of vanadium in stone coal deposit at Shangluo city,Shanxi province,China[J].Journal of Mineralogy,2017,37(Z1):29-35.
[25]HE D,FENG Q,ZHANG G.An environmentallyfriendly technology of vanadium extraction from stone coal[J].Minerals Engineering,2007,20(12):1184-1186.
[26]涂华,李文华,白向飞.中国煤中磷的分布特征[J].燃料化学学报,2011,39(9):641-646.
TU Hua,LI Wenhua,BAI Xiangfei.Distribution characteristics of phosphorus in Chinese coals[J].Journal of Fuel Chemistry,2011,39(9):641-646.
[27]周俊生,田娟.贵州煤磷化工现状及发展前景简析[J].山东化工,2012,41(8):24-25.
ZHOU Junsheng,TIAN Juan.Brief analysis of present situation and development prospect of Guizhou coal phosphorus chemical industry[J].Shandong Chemical Industry,2012,41(8):24-25.
[28]段付岗.煤化工和磷复肥相关系统的联产改造[J].煤化工,2013,41(6):31-33.
DUAN Fugang.Coproduction transformation of coal chemical industry and Phosphate Compound Fertilizer Related System[J].Coal Chemical Industry,2013,41(6):31-33.
[29]陈鹏.中国煤炭性质、分类和利用[M].北京:科学出版社,2007.
[30]黄鹏,林璠,刘爽,等.我國石煤提钒废水的处理现状与展望[J].化工环保,2016,36(1):22-25.
HUANG Peng,LIN Fan,LIU Shuang,et al.Present situation and prospect of vanadium recovery wastewater from stone coal in China[J].Environmental Protection in chemical industry,2016,36(1):22-25.
[31]张卫国,杨建业,侯恩科.超高有机硫煤中微量元素的地球化学规律[J].西安科技大学学报,2019,39(1):56-62.
ZHANG Weiguo,YANG Jianye,HOU Enke.Geochemical regularity of trace elements in superhigh organic sulfur coal[J].Journal of Xi’an University of Science and Technology,2019,39(1):56-62.
[32]张军营,郑楚光,刘晶,等.煤灰中微量重金属元素的迁移性实验研究[J].华中科技大学学报(自然科学版),2002,30(20):83-85.
ZHANG Junying,ZHENG Chuguang,LIU Jing,et al.Experimental study on the migration of trace heavy metals in coal ash[J].Journal of Huazhong University of Science and Technology (natural science edition),2002,30(20):83-85.
[33]DAI S F,REN D Y,CHOU C L.Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J].International Journal of Coal Geology,2012,94:3-21.