论文部分内容阅读
针对文本自动摘要任务中生成式摘要模型对句子的上下文理解不够充分、生成内容重复的问题,基于BERT和指针生成网络(PGN),提出了一种面向中文新闻文本的生成式摘要模型——BERT-指针生成网络(BERTPGN)。首先,利用BERT预训练语言模型结合多维语义特征获取词向量,从而得到更细粒度的文本上下文表示;然后,通过PGN模型,从词表或原文中抽取单词组成摘要;最后,结合coverage机制来减少重复内容的生成并获取最终的摘要结果。在2017年CCF国际自然语言处理与中文计算会议(NLPCC2017)单文