论文部分内容阅读
利用遗传算法(GA)的良好寻优能力对汽轮机排汽焓动态递归(Elman)神经网络进行了优化,建立了GA-Elman神经网络预测模型,并以某电厂350MW机组为例进行了汽轮机排汽焓的在线计算。结果表明:GA-Elman神经网络预测模型克服了传统Elman神经网络利用梯度下降法进行训练所具有的易陷入局部极小值、收敛速度慢、精度低等缺点,提高了预测精度和收敛速度,较适合现场应用。