论文部分内容阅读
重力固体潮信号主要是由于太阳、月亮等天体轨道相对位置变化而产生的,同时受地质、水文、大气等地理条件变化的影响,所以既是一个有规律、周期性变化的信号,也包含反映地质、水文、大气等地理条件变化的异常信息。通过对重力固体潮信号的建模,可反映、预测重力固体潮信号中周期性变化的基本规律,通过对比其理论计算值,可进一步提取重力固体潮信号中的异常变化信息。基于一种具有强鲁棒性、纯随机搜索的新群体智能优化算法,改进径向基神经网络学习算法,避免学习算法进入局部最优,提高网络训练的有效性和所建网络模型的可靠性。在实验中