论文部分内容阅读
研究目的:针对低频分析和记录(LOFAR)使用场合,利用目标的幅度和频率信息来解算目标运动要素。创新要点:利用目标幅度和频率信息,推出无误差的目标特征频率、绝对速度、最接近点距离、辐射幅度等四个参量理论公式,并得到解算目标运动要素的优化方法。研究方法:1.用计算机进行无误差的理论验证仿真,并在有噪声的影响下,验证算法的正确性;2.在空气中,使用汽车模拟目标的运动,用麦克风采集汽车运动的多普勒信号(见图2),验证算法的工程有效性和正确性。重要结论:1.使用三次等间隔采样的目标幅度和频率信息,即可无误差地解算出目标特征频率、绝对速度、最接近点距离、辐射幅度等四个参量;2.使用优化后的算法,经实际空气实验验证,使用单个LOFAR传感器即可解算出目标的四个参量,且四个参量的估计相对误差小于10%。
The purpose of the study: For low frequency analysis and recording (LOFAR) use occasions, the use of target amplitude and frequency information to calculate the target motion elements. Innovative points: Using the target amplitude and frequency information, the four parametric formulas of the target characteristic frequency, absolute speed, the closest point distance, radiation amplitude are introduced without errors and the optimization method of solving the target motion elements is obtained. Research methods: 1. Using computer to verify the simulation without error, and under the influence of noise, verify the correctness of the algorithm; 2. In the air, use the car to simulate the movement of the target, Le signal (see Figure 2), verify the validity of the algorithm and the correctness of the algorithm. Important conclusions: 1.Using the target amplitude and frequency information sampled at three equal intervals, the four parameters such as the target characteristic frequency, absolute speed, the closest point distance and radiation amplitude can be solved without error; 2. Using the optimized algorithm The experimental results show that using a single LOFAR sensor solves four target parameters and the relative error of the four parameters is less than 10%.