论文部分内容阅读
在对当前几种较流行的统计机器翻译多系统融合方法分析的基础上,提出了一种改进的多系统融合框架,该框架集成了最小贝叶斯风险解码和多特征混淆网络解码两种技术。融合过程如下:(1)从多个翻译系统输出的-best结果中,利用最小贝叶斯风险解码器选择一个风险最小的假设作为对齐参考;(2)将其余的-best假设结果与该参考对齐,从而构建混淆网络。多特征混淆网络基于对数线性模型,引入了更多有效的知识源参与最优路径选择,融合后的BLEU得分比融合前最好的单系统BLEU得分提高了2.19%。在对齐方法上,我们提出了一种改进的