论文部分内容阅读
胸阻抗 (TEB)的测量无论是对心血管功能的研究还是对临床诊断都有很重要的意义。然而 TEB信号总是被淹没在很强的呼吸干扰信号中。传统的信号处理方法 ,如数字滤波器 ,信号平均 ,自适应处理等对去除呼吸成分都有一定的局限。对于单通道测量系统 ,论文使用了小波去噪的方法。对于多通道系统 ,使用了独立分量分析的方法 ,分析的结果显示 ,对于单通道系统 ,基于离散小波变换的方法是一种快速的、有效的、容易实现的方法。对于多通道系统 ,基于独立分量分析的方法可以不失真地将阻抗波提取出来。基于独立分量分析的方法基本上解决了去除 TEB中的呼吸干扰的问题。
The measurement of thoracic impedance (TEB) has important implications for both cardiovascular function and clinical diagnosis. However, the TEB signal is always submerged in a very strong respiratory disturbance signal. Traditional signal processing methods, such as digital filters, signal averaging, adaptive processing, have some limitations on the removal of respiratory components. For single-channel measurement system, the paper uses wavelet denoising method. For multi-channel systems, independent component analysis is used. The analysis shows that the method based on discrete wavelet transform is a fast, effective and easy-to-implement method for single-channel system. For multi-channel systems, independent component analysis based methods can be undistorted impedance wave extraction. The method based on independent component analysis basically solves the problem of removing respiratory interference in the TEB.