论文部分内容阅读
对利用Bayesian模型分析热传导反问题中的导热系数预测问题的方法进行了研究。导热系数反问题的解是其后验概率密度的数学期望,用MarkovchainMonteCarlo算法计算后验状态空间以得到未知导热系数的统计估计。方法中取导热系数的先验分布满足正态分布,似然函数中的温度数据满足稳态零均值白噪声,先验分布与似然函数相乘得到后验概率密度函数。采用Metropolis-Hasting算法进行数据采样构造Markovchain,并截取收敛后的样本进行分析。