论文部分内容阅读
为提高关联规则挖掘算法的效率及其对大型数据集的适应性,提出了基于划分的带项目约束的频繁项集挖掘算法Partition_CHS_Miner。算法按照约束条件裁减数据集,并采用基于约束的超结构CHS(constraint-based hyper-structure)存储数据。对大型数据集,先将其划分为多个不相交的数据子集,使子集的大小适合主存,然后在子集上采用基于超结构的带项目约束的挖掘算法挖掘出局部频繁项集,最后合并所有子集中的频繁项集形成全局的带约束的候选项集,计算出全局频繁项集。实验证明了算法的有效性。