动态环境下基于微粒群优化算法的数据分类方法研究

来源 :科学技术与工程 | 被引量 : 0次 | 上传用户:longriver0001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
动态环境下数据流容易出现概念漂移现象。随着数据的逐渐到达,隐含在数据中的知识在一定程度上会出现改变,当前数据分类方法无法进行动态更新,不适于动态环境下数据的分类。为此,提出一种新的基于微粒群优化算法的数据分类方法,通过K-means方法对动态环境下的数据进行分类。介绍了微粒群优化算法,将所有个体看作d维搜索空间中没有体积的微粒,在搜索空间中以某一速度飞行,该速度可通过其自身及相邻微粒的飞行经验进行动态调整。通过某种规则对新微粒的局部最优值进行更新,利用优化后的微粒群算法实现数据分类。实验结果表明,所提方法
其他文献
当前超分辨率数字图像特征提取及重构方法容易受到外界环境的干扰,导致重构结果不可靠,重构图像质量较低。为此,提出一种新的超分辨率数字图像特征提取方法,通过BRISK描述子对超分辨率数字图像特征进行提取,以提高重构图像质量。详细分析了重构约束的构建过程;在此基础上,通过低分辨率数字图像与平滑性求解获取高分辨率数字图像,从而实现超分辨率数字图像的重构。实验结果表明,采用所提的新的超分辨率数字图像特征提取
以参考文献[3]给定的运动微分方程为基础,使用一种更合理的方法对基础两端受简谐激励的铰支梁的最低阶主共振现象进行了研究,避免了直接采用线性自由振动模态的展开式来表示
多路径路由对无线传感器网络的负载均衡和容错能力等方面都有一定改善作用。在研究一些多路径路由算法的基础上,对分层的无线传感器网络路由进行探索,提出了一种基于树的动态多