论文部分内容阅读
The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored. To understand the variation trends of carbon arrangement order, microcrystal size, and graphitization degree against temperature during the graphitization process, a series of experiments were performed using Raman spectroscopy and X-ray diffraction (XRD). Subsequently, the influencing factors of the dom-inant reaction at different temperatures were analyzed using thermodynamics and kinetics. The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics. Temperature played a crucial role in the formation and growth of a graphitic structure. Meanwhile, multivariate mechanisms coexisted in the graphitization process. At ultrahigh temperatures, the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced. At low tem-peratures, the reaction is mainly controlled by dynamics, while at high temperatures, thermodynamics dominates the direction of the reaction.