论文部分内容阅读
提出了利用有序神经网络研究铝电解槽阳极效应的预报问题。概述了铝电解槽及其阳极效应的基本情况,针对铝电解槽控制难题和传统方法的不足,选择有序神经网络用于阳极效应概率预报。描述了有序神经网络的基本结构、与传统单隐层BP神经网络的区别以及由此带来的网络映射性能的改善,并使用梯度下降原则推导了有序神经网络的学习算法。使用铝电解槽的现场数据对有序神经网络进行训练并检验,结果表明有序神经网络可以比传统神经网络更及时、准确地对铝电解槽阳极效应进行预报。