论文部分内容阅读
针对基于递推下降法的多输出支持向量回归算法在模型参数拟合过程中收敛速度慢、预测精度低的情况,使用一种基于秩2校正规则且具有二阶收敛速度的修正拟牛顿算法(BFGS)进行多输出支持向量回归算法的模型参数拟合,同时为了保证模型迭代过程中的下降量和全局收敛性,应用非精确线性搜索技术确定步长因子。通过分析支持向量机(SVM)中核函数的几何结构,构造数据依赖核函数替代传统核函数,生成多输出数据依赖核支持向量回归模型。将模型与基于梯度下降法、修正牛顿法拟合的多输出支持向量回归模型进行对比。实验结果表明,在200个