论文部分内容阅读
Applying the multidimensional Lindstedt-Poincaré (MDLP) method, we study the forced vibrations with internal resonance of a clamped-clamped pipe conveying fluid under external periodic excitation. The frequency-amplitude response curves of the first-mode resonance with internal resonance are obtained and its characteristics are discussed; moreover, the motions of the first two modes are also analyzed in detail. The present results reveal rich and complex dynamic behaviors caused by internal resonance and that some of the internal resonances are decided by the excitation amplitude. The MDLP method is also proved to be a simple and efficient technique to deal with nonlinear dynamics.
Applying the multidimensional Lindstedt-Poincaré (MDLP) method, we study the forced vibrations with internal resonance of a clamped-clamped pipe conveying fluid under external periodic excitation. The frequency-amplitude response curves of the first-mode resonance with internal resonance are obtained and its characteristics are discussed; moreover, the motions of the first two modes are also analyzed in detail. The present results reveal rich and complex dynamic behaviors caused by internal resonance and that some of the internal resonances are decided by the excitation amplitude. The MDLP method is also proved to be a simple and efficient technique to deal with nonlinear dynamics.