论文部分内容阅读
物理学是研究物质结构、物体相互作用与运动规律的自然科学.也就是说,物理是经过天才科学家们的提炼、概括的,对多彩缤纷的自然的反映.人们常常赞美大自然的绮丽风光为鬼斧神工;感慨文学艺术中诗书琴画是千古绝唱;同样,也赞叹物理学中的简单、对称、和谐与奇异之美.
第谷用毕生精力,在布拉格天文台观测了大量天文数据资料.第谷死后,将这些天文资料都留给了开普勒.你看表格中的数据,是不是有些凌乱?但是开普勒坚信一定可以找到行星运动数值上的简单关系,因为物理学是符合简单美的观念已经深深地刻在他的脑海中.经过多年的艰苦工作,他终于发现了行星运动的三大定律,其中第三条定律的数学表达式是T2=D3(式中T代表行星绕太阳一周经过的时间,即公转周期,D代表行星离开太阳的距离).当你从如此凌乱无序的数据中发现如此简洁的公式,使繁星浩淼的宇宙顿时变得清晰时,象这种“哲学领悟、物理直觉和数学技巧最惊人的组合”的公式,难道你还没有体验到它的简单美吗?
如果地球表面的重力加速度不是9.8米/秒2,而是一个随时变化的数值,那么世界将会变得怎么样呢?一会儿脚被大地粘住,挪动不得;一会儿又捷步如飞,想停也停不下来;说不定什么时候,漫天飞舞的树叶真的像铅球砸破了你的脑门.果真如此的话,人们的生存就成了问题.然而这样的情况是不会发生的,因为地球的重力加速度在是球表面的任何地方都是相同的,约等于9.8米/秒2.显然9.8就不是一个简单的数字了,它从某个方面反映了自然的和谐与平衡,让人觉得奇妙与神秘.其实,物理常数也是开启自然规律的钥匙,如万有引力是经典物理的标志;普朗克常数是量子物理的符号,等等.
是的,物理中的每一条定理、定律或公式,甚至一个常数,虽然形式极其简单,但让人一看就能领会其中的内涵,便能体会到其中的简洁美.因为科学家们似乎总是用周围浓缩的公式和定理来表现他们高水平的美感的.难怪阿基米德发现鉴别皇冠是否掺假的方法时,竟然赤裸着身子跳出浴盆.因为他沉浸在科学的发现之中,体验到物理中的美.
对称总是和美联系在一起的.杨振宁在诺贝尔物理奖获奖演说中也深感对对称力量的钦佩.事实上,自然原则的内在对称性成为一个具有规范意义的美学标准.你看平面镜中的像与物关于镜面对称;万有引力与库仑定律在形式上对称,而麦克斯韦方程组更是自然科学美的力作,美学上真正完美的对称科学作品.象这样形式上对称的物理客体或物理原理是无法统计的,其对称之美也是无法用语言能表述到位的.
抽象对称性在科学研究中更为普遍与重要.1820年丹麦物理学家奥斯特发现了电流的磁效应,即电可以转变为磁.在对称性思想的指引下,英国年轻的物理学家法拉第坚信:既然电可以转化为磁,那么磁也一定可以转化为电.随后他开始了长达10年的艰辛工作,并在1831年验证了他自己的天才预言,发现了电磁感应原理,成为十九世纪最伟大的发现之一,也为后来发明发电机,使人类对能源的利用从化石时代进入电气时代做好了理论上的准备.当法拉第在皇家协会展示他的发电机时,一位贵妇人问:“这玩意儿能有什么用呢?”法拉第回答:“你不应当问刚出生的婴儿有什么出息,谁能料到他长大后会怎么样?”如此巧妙的回答,实在对科学的宁馨儿的由衷赞美,也是对自然界内在和谐的崇高礼赞.
数学对称性又称数学变换不变性,其基本思想是,每一个变换不变性都包含不变量和变换式两个要素.这里的不变量泛指在变换中保持不变的物理量、物理定律等.如牛顿定律在伽俐略变换中具有不变性.从牛顿到爱因斯坦都认为物理学的理论对于空间-时间变换必须是不变的.洛仑兹变换的不变性导致统计力学与量子力学;相空间变换的不变性导致广义相对论.
狄拉克是20世纪一位伟大的物理学家.他在当时提出了一个描写电子运动的方程,这个方程形式上对称、优美,并和实验结果非常符合.但是方程的对称却带来了一个当时令人意外的情形:原子中正负电荷间存在着一个与核外电子的质量、电量相等而电性却相反的“正电子”.如果坚持这个方程就必须承认这个当时看来子乌虚有的“正电子”的存在,必然会遭到许多物理学家的反对.是放弃还是坚持?狄拉克毫不犹豫地选择了后者.几年后,实验证实了“正电子”的存在,并完全符合狄拉克的预言.
千姿百态的自然是普遍联系的,反映物质世界的物理规律也是丰富多彩、和谐统一的.物理学中各种理论内部以及各部分之间的现象、概念与规律等却是互相矛盾的,表现出自洽和谐美.物理高级理论对低级理论的包含,或者说低级理论与高级理论在某些特定条件下的结论一致,比如当物质的速度远小于光速时,相对论力学就还原为牛顿经典力学.而当h → O 时量子力学就回到了经典力学,物理就表现出对应和谐美.量子力学是通过两条途径发展起来的,一条是在玻尔思想的影响下,把微观过程当作粒子来处理,描绘出一幅以粒子性为根本特征的图象;另一条是在爱因斯坦思想影响下建立的以波动性为核心特征的理论,描绘出了以波动性为特征的物理图象,这两种表述都能从某个方面说明粒子的特征,但是却互不包含,而量子力学理论诠释的关键在于把彼此排斥的波动性和粒子性两种描述协调起来,用粒子和它出现的概率来描述微观客体的波粒二象性.将互补又互斥的物理规律统一起来,表现出物理学的互补和谐美.
培根说:“没有一个美的东西不是匀称中有着某种奇异美”.古希腊哲人认为最美的平面图是圆,最美的立体图形是球体,最美的运动是匀速圆周运动,所以亚里士多德、托勒密、哥白尼都用圆形轨道建立和谐的宇宙图象,但开普勒发现了行星运动三大定律,提出行星运动軌道是椭圆,椭圆与圆相比有所奇异,因而比圆更美.法国天文学家勒威耶曾发现,水星每绕太阳公转一周,它离太阳最近的那点位置有些改变,这种现象被称为水星近日点进动,水星每100年进动5600秒.科学家们在扣除了岁差和其他影响后,仍有约43秒/百年的进动无法解释,这个问题长期困扰着物理学界.但是根据广义相对论的推算,行星的轨道本身就不是一个封闭的椭圆,它自己会进动,水星的进动值正好就是43秒/进年.“神灶星”消逝了,这个长期困扰物理学界的难题最终在广义相对论中找到了归宿.从封闭的椭圆到不封闭、进动的椭圆,闪耀着奇异的光芒,它深深吸引着热爱物理的人们,让人感受到它的美与妙.其实,一种低级形态理论对高级形态理论的不包含,高级形态理论面对复杂多变的大自然时显得如此的“幼稚”与“朦胧”,从某个方面看,不也是一种奇异美吗?
象这样,由于相信物理学的美而取得成功的科学家和科学发现(发明)是不胜枚举的.罗丹说:“生活中并不缺少美,而是缺少美的发现”.虽然物理中没有文学作品中那些可歌可泣的形象美,没有音乐中那种催人泪下或扣人心弦的旋律,但是它的剧情在默默无闻中展开,它的威力显示在你了解它或者完全不了解它中.当你认真分析与细细品味它那惊人的简洁、神秘的对称、美妙的和谐、撩人的奇异时,你还觉得物理不美吗?
第谷用毕生精力,在布拉格天文台观测了大量天文数据资料.第谷死后,将这些天文资料都留给了开普勒.你看表格中的数据,是不是有些凌乱?但是开普勒坚信一定可以找到行星运动数值上的简单关系,因为物理学是符合简单美的观念已经深深地刻在他的脑海中.经过多年的艰苦工作,他终于发现了行星运动的三大定律,其中第三条定律的数学表达式是T2=D3(式中T代表行星绕太阳一周经过的时间,即公转周期,D代表行星离开太阳的距离).当你从如此凌乱无序的数据中发现如此简洁的公式,使繁星浩淼的宇宙顿时变得清晰时,象这种“哲学领悟、物理直觉和数学技巧最惊人的组合”的公式,难道你还没有体验到它的简单美吗?
如果地球表面的重力加速度不是9.8米/秒2,而是一个随时变化的数值,那么世界将会变得怎么样呢?一会儿脚被大地粘住,挪动不得;一会儿又捷步如飞,想停也停不下来;说不定什么时候,漫天飞舞的树叶真的像铅球砸破了你的脑门.果真如此的话,人们的生存就成了问题.然而这样的情况是不会发生的,因为地球的重力加速度在是球表面的任何地方都是相同的,约等于9.8米/秒2.显然9.8就不是一个简单的数字了,它从某个方面反映了自然的和谐与平衡,让人觉得奇妙与神秘.其实,物理常数也是开启自然规律的钥匙,如万有引力是经典物理的标志;普朗克常数是量子物理的符号,等等.
是的,物理中的每一条定理、定律或公式,甚至一个常数,虽然形式极其简单,但让人一看就能领会其中的内涵,便能体会到其中的简洁美.因为科学家们似乎总是用周围浓缩的公式和定理来表现他们高水平的美感的.难怪阿基米德发现鉴别皇冠是否掺假的方法时,竟然赤裸着身子跳出浴盆.因为他沉浸在科学的发现之中,体验到物理中的美.
对称总是和美联系在一起的.杨振宁在诺贝尔物理奖获奖演说中也深感对对称力量的钦佩.事实上,自然原则的内在对称性成为一个具有规范意义的美学标准.你看平面镜中的像与物关于镜面对称;万有引力与库仑定律在形式上对称,而麦克斯韦方程组更是自然科学美的力作,美学上真正完美的对称科学作品.象这样形式上对称的物理客体或物理原理是无法统计的,其对称之美也是无法用语言能表述到位的.
抽象对称性在科学研究中更为普遍与重要.1820年丹麦物理学家奥斯特发现了电流的磁效应,即电可以转变为磁.在对称性思想的指引下,英国年轻的物理学家法拉第坚信:既然电可以转化为磁,那么磁也一定可以转化为电.随后他开始了长达10年的艰辛工作,并在1831年验证了他自己的天才预言,发现了电磁感应原理,成为十九世纪最伟大的发现之一,也为后来发明发电机,使人类对能源的利用从化石时代进入电气时代做好了理论上的准备.当法拉第在皇家协会展示他的发电机时,一位贵妇人问:“这玩意儿能有什么用呢?”法拉第回答:“你不应当问刚出生的婴儿有什么出息,谁能料到他长大后会怎么样?”如此巧妙的回答,实在对科学的宁馨儿的由衷赞美,也是对自然界内在和谐的崇高礼赞.
数学对称性又称数学变换不变性,其基本思想是,每一个变换不变性都包含不变量和变换式两个要素.这里的不变量泛指在变换中保持不变的物理量、物理定律等.如牛顿定律在伽俐略变换中具有不变性.从牛顿到爱因斯坦都认为物理学的理论对于空间-时间变换必须是不变的.洛仑兹变换的不变性导致统计力学与量子力学;相空间变换的不变性导致广义相对论.
狄拉克是20世纪一位伟大的物理学家.他在当时提出了一个描写电子运动的方程,这个方程形式上对称、优美,并和实验结果非常符合.但是方程的对称却带来了一个当时令人意外的情形:原子中正负电荷间存在着一个与核外电子的质量、电量相等而电性却相反的“正电子”.如果坚持这个方程就必须承认这个当时看来子乌虚有的“正电子”的存在,必然会遭到许多物理学家的反对.是放弃还是坚持?狄拉克毫不犹豫地选择了后者.几年后,实验证实了“正电子”的存在,并完全符合狄拉克的预言.
千姿百态的自然是普遍联系的,反映物质世界的物理规律也是丰富多彩、和谐统一的.物理学中各种理论内部以及各部分之间的现象、概念与规律等却是互相矛盾的,表现出自洽和谐美.物理高级理论对低级理论的包含,或者说低级理论与高级理论在某些特定条件下的结论一致,比如当物质的速度远小于光速时,相对论力学就还原为牛顿经典力学.而当h → O 时量子力学就回到了经典力学,物理就表现出对应和谐美.量子力学是通过两条途径发展起来的,一条是在玻尔思想的影响下,把微观过程当作粒子来处理,描绘出一幅以粒子性为根本特征的图象;另一条是在爱因斯坦思想影响下建立的以波动性为核心特征的理论,描绘出了以波动性为特征的物理图象,这两种表述都能从某个方面说明粒子的特征,但是却互不包含,而量子力学理论诠释的关键在于把彼此排斥的波动性和粒子性两种描述协调起来,用粒子和它出现的概率来描述微观客体的波粒二象性.将互补又互斥的物理规律统一起来,表现出物理学的互补和谐美.
培根说:“没有一个美的东西不是匀称中有着某种奇异美”.古希腊哲人认为最美的平面图是圆,最美的立体图形是球体,最美的运动是匀速圆周运动,所以亚里士多德、托勒密、哥白尼都用圆形轨道建立和谐的宇宙图象,但开普勒发现了行星运动三大定律,提出行星运动軌道是椭圆,椭圆与圆相比有所奇异,因而比圆更美.法国天文学家勒威耶曾发现,水星每绕太阳公转一周,它离太阳最近的那点位置有些改变,这种现象被称为水星近日点进动,水星每100年进动5600秒.科学家们在扣除了岁差和其他影响后,仍有约43秒/百年的进动无法解释,这个问题长期困扰着物理学界.但是根据广义相对论的推算,行星的轨道本身就不是一个封闭的椭圆,它自己会进动,水星的进动值正好就是43秒/进年.“神灶星”消逝了,这个长期困扰物理学界的难题最终在广义相对论中找到了归宿.从封闭的椭圆到不封闭、进动的椭圆,闪耀着奇异的光芒,它深深吸引着热爱物理的人们,让人感受到它的美与妙.其实,一种低级形态理论对高级形态理论的不包含,高级形态理论面对复杂多变的大自然时显得如此的“幼稚”与“朦胧”,从某个方面看,不也是一种奇异美吗?
象这样,由于相信物理学的美而取得成功的科学家和科学发现(发明)是不胜枚举的.罗丹说:“生活中并不缺少美,而是缺少美的发现”.虽然物理中没有文学作品中那些可歌可泣的形象美,没有音乐中那种催人泪下或扣人心弦的旋律,但是它的剧情在默默无闻中展开,它的威力显示在你了解它或者完全不了解它中.当你认真分析与细细品味它那惊人的简洁、神秘的对称、美妙的和谐、撩人的奇异时,你还觉得物理不美吗?