论文部分内容阅读
面向服务计算( SOC)和面向服务架构( SOA)技术共同推动了Web服务及其组合技术的发展。网络环境的动态变化及其对Web服务质量( QoS)的影响,给服务成功组合带来挑战,为服务组合效果满足用户需求带来难题。为了得到经济、省时且成功率高的服务组合策略,综合考虑网络环境的动态变化、服务质量的可变性、用户需求的多样性,采用分散的部分可观测马尔可夫决策( DEC_POMDP)模型描述多个服务Agent的自组织服务组合系统,在基本Q学习算法基础上做出改进,求解模型得到组合策略。实验结果表明求解的策略较大地提高