论文部分内容阅读
The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method. It is confirmed that there are two loss peaks (1.555 and 1.598 μm) if there is a hole missing in the cladding far from the core. The closer to the core the hole missing is, the larger the confinement losses are, and even no mode could propagate in the core. The main power of the fundamental mode leaks from the core to the cladding defect. The quality of PBGFs can be improved through controlling the number and position of defects.
The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method. It is confirmed that there are two loss peaks (1.555 and 1.598 μm) if there is a hole missing in the cladding far from the core. The closer to the core the hole missing is, the larger the confinement losses are, and even no mode could propagate in the core. The main power of the fundamental mode leaks from the core to the cladding defect The quality of PBGFs can be improved through controlling the number and position of defects.