论文部分内容阅读
近年来随着大型文档-摘要语料库的公开和深度学习技术的兴起,基于Seq2Seq和注意力模型的文本摘要算法取得重大成效,然而生成的摘要在准确性方面仍存在不少问题。提出一种融合信息选择和语义关联的文本摘要模型,旨在综合改善生成摘要中存在的未登入词、句子重复、信息冗余以及生成摘要的语义与原文的语义存在偏差甚至大相径庭等问题。模型设计了一种选择网络对编码器的输出进行筛选,保留关键内容同时过滤掉无效的信息,提供给解码器高质量的编码结果,帮助减少生成摘要的冗余信息;通过将拷贝机制、覆盖度机制与语义相关性相融合,解决未登