论文部分内容阅读
本文采用熵特征的提取方法,大大减小了特征值的计算量,增强了小波神经网络(WNN)识别的有效性。同时采用改进的算法训练小波神经网络,有效的避免算法陷入局部最小值,克服了传统BP网络的固有缺点,并提高了小波神经网络的训练速度。结果表明,该系统能快速有效的识别出数字信号的调制类型,具有较高的识别精度。