论文部分内容阅读
本文研究了独立成分分析(ICA)两种不同的结构ICAⅠ和ICAⅡ在掌纹识别中的应用。为了提高识别准确性和可靠性,该方法首先对掌纹图像进行预处理,提取掌纹感兴趣(ROI)区域进行特征提取和匹配。为了减少计算量,运用ICA算法之前,先采用主成分分析(PCA)算法去除掌纹图像的二阶统计特征相关性,其余的高阶统计特征由ICA分离。对于PolyU掌纹图像库,基于ICA模型的预测误差平方和(SPE)小于PCA,而且重构的原始图像优于PCA。为了比较两种算法识别性能,本文分别用PCA、ICAⅠ、ICAⅡ提取特征掌