论文部分内容阅读
低照度图像信息受损严重,会导致失效卫星的位姿估计精度和鲁棒性降低。基于此,提出了无监督生成式对抗网络低照度图像增强模型。生成器以U-Net网络为基础,并设计密集残差连接结构。判别器设计为全局-局部的双辨别器结构,由传统的单一标量扩展为多标量判别。在小样本的条件下,基于进化训练与并行训练方式改进基于SinGAN的数据增广方法。最后,在基于ORB-SLAM位姿初始化的基础上,建立特征信息的局部地图,克服位姿估计对参考帧的依赖;通过关键帧ROI的稠密匹配,建立关于平面法向量和单目相机安装高度的非线性优化模