论文部分内容阅读
针对跨域服装检索中服装商品图像拍摄严格约束光照、背景等条件,而用户图像源自复杂多变的日常生活场景,难以避免背景干扰以及视角、姿态引起的服装形变等问题.提出一种结合注意力机制的跨域服装检索方法.利用深度卷积神经网络为基础,引入注意力机制重新分配不同特征所占比重,增强表述服装图像的重要特征,抑制不重要特征;加入短连接模块融合局部重要特征和整幅图像的高层语义信息,提取更具判别力的特征描述子;联合分类损失函数和三元组损失共同约束网络训练过程,基于类别信息缩小检索范围.采用标准的top-k检索精度作为评价指标