论文部分内容阅读
针对BP神经网络学习过程收敛速度慢及易陷入局部极小值的缺陷,研究了levenberg—marquart算法(即LM算法).为解决LM算法中学习速率的选择和逆矩阵的求解这两个严重影响训练时间和收敛精度的问题,采用LU分解法对LM算法进行改进和优化,并通过MATLAB语言编程实现,将得到的LMBP神经网络PID控制器应用于暖通空调冷冻水循环的控制回路中,将其控制效果与PID控制算法、BP神经网络PID控制算法进行仿真对比研究.研究结果表明,采用LMBP神经网络PID控制器在减少超调量、加快收敛速度、减少稳态误