论文部分内容阅读
以川麦冬叶部黑斑病、炭疽病、叶枯病3种病害图像为研究对象,对比分析了双峰法、Otsu阈值分割法以及K-means聚类分割算法对麦冬病斑图像的分割效果。结果表明,K-means聚类算法结合数学形态学方法能满足病斑分割要求;提取病斑图像颜色、形状、纹理信息融合成病斑特征向量;运用方差分析与主成分分析法剔除了病害表征能力较差的特征参数并将特征向量维数降至10维;运用支持向量机设计出分类器进行病害识别,经试验识别率达到了90%。该方法具有成本低、算法简单、运行高效等优势,基本符合实际应用要求。