论文部分内容阅读
为了提高随机抽取一致性算法(RANSAC)的效率和精度,提出了一种基于采样优化的随机抽取一致性算法。首先通过匹配点的相似性度量计算匹配点先验概率,根据先验概率随机抽取最小子集估计模型,在全部数据上检验模型,依次迭代找到次优模型;然后以次优模型对应的内点集作为采样的初始集,随机抽取最小子集估计模型,并在全部数据上检验模型,若模型更好则更新采样初始集,依次迭代找到最优模型;最后,选择最优模型获得符合该模型的内点和最终的模型参数。选取多对不同变换的图像作为实验数据,从算法运行效率和模型精确度两方面对算法进