论文部分内容阅读
数据挖掘以发现常规模式为主体,但离群数据在欺诈分析及安全领域具有重要分析价值,离群数据检测已成为数据挖掘的重要内容。对聚类与分类以及关联规则分析中典型的常规数据挖掘算法如何处理离群数据进行全面分析与总结,讨论了BIRCH、CURE、Chameleon、DBSCAN以及基于共享最近邻的聚类算法以及基于不平衡分类和基于非频繁模式的离群检测技术,给出了一种利用K-最近邻算法的离群数据检测方法,并报告了测试结果。