论文部分内容阅读
Sensor networks consisted of low-cost, low-power, multifunctional miniature sensor devices have played an important role in our daily life. Light and humidity monitoring, seismic and animal activity detection, environment and habitat monitoring are the most common applications. However, due to the limited power supply, ordinary query methods and algorithms can not be applied on sensor networks. Queries over sensor networks should be power-aware to guarantee the maximum power savings. The minimal power consumption by avoiding the expensive communication of the redundant sensor nodes is concentrated on. A lot of work have been done to reduce the participated nodes, but none of them have considered the overlapping minimum bounded rectangle (MBR) of sensors which make them impossible to reach the optimization solution. The proposed OMSI-tree and OMR algorithm can efficiently solve this problem by executing a given query only on the sensors involved. Experiments show that there is an obvious improvement compared with TinyDB and other spatial index, adopting the proposed schema and algorithm.
Sensor networks consisted of low-cost, low-power, multifunctional miniature sensor devices have played an important role in our daily life. Light and humidity monitoring, seismic and animal activity detection, environment and habitat monitoring are the most common applications. However, due the limited power supply by avoiding the expensive communication of the redundant sensor nodes is concentrated on. A lot of work have been done to reduce the participated nodes, but none of them have considered the overlapping minimum bounded rectangle (MBR) of sensors which make them impossible to reach the optimization solution. The proposed OMSI-tree and OMR algorithm can solved solve this problem by executing a given query only on the sensors involved. Experiments show that there is an obviou s improvement compared with TinyDB and other spatial index, adopting the proposed schema and algorithm.