论文部分内容阅读
针对个性化服务研究中用户兴趣度估计的要求,分析用户行为特征与兴趣度的相互关系,选取页面关注时间、滚动/翻页次数、页面大小作为用户兴趣度的判别依据,提出一种基于RBF神经网络模型的用户兴趣度量化估计方法。仿真实验证明,与多元线性回归模型的计算结果相比,该方法在平均残差和预测准确度方面均有更好的效果。