论文部分内容阅读
提出了一种新的多输出支持向量回归算法(M-SVR),给出了定义在超球上的损失函数,并将训练SVM的问题转化为迭代解线性方程组的问题.在求解过程中采用边计算边使矩阵降阶的办法,使得在求解的同时找到了支持向量.实验结果表明:M-SVR算法与SVR算法相比,支持向量明显减少,并且具有更好的整体预测精度和抗噪性能.