论文部分内容阅读
针对广域测量系统的实测信号受高斯色噪声的影响,提出一种利用FOMC-HTLSAdaline进行低频振荡在线辨识的新方法。首先,为抑制高斯色噪声的影响,利用四阶混合累积量的盲高斯性,将四阶混合累积量(FOMC)序列代替实测序列进行低频振荡的辨识。然后,利用HTLS和自适应神经网络算法(AdalineANN)相结合,估计出低频振荡的频率、衰减因子、幅值和相位。Adaline神经网络的引入解决了四阶混合累积处理后,模式幅值和相位不易确定的难点,同时减少矩阵处理引入的误差累积,提高检测精度。四机两区域系统仿真算例