论文部分内容阅读
根据实际网络中测量得到的网络流量数据,提出一种改进型Elman神经网络模型———争书性输入多层反馈Elman网络。在网络权值的训练过程中引入混沌搜索机制,利用Tent映射的遍历性进行混沌变量的优化搜索,以减少数据冗余,解决局部收敛问题。实验结果表明,该模型及其算法有效提高了网络的训练速度及网络流量的预测精度。