论文部分内容阅读
为了解决最小控制综合(MCS)算法在快速扰动下缺乏鲁棒性和线性二次调节器(LQR)在非线性扰动下容易失稳的问题,构造了一种自适应增益补偿函数,对标准的MCS算法进行改进.提出了基于LQR-IMCS(改进的最小控制综合)算法的新策略,并通过波波夫准则验证了该系统的稳定性.以实验室压电壁板结构的第1阶振动模态为研究对象,分别施加随机扰动和高次谐波扰动.仿真和实验结果表明:该方法相对于标准的MCS算法具有更快的收敛速度和更小的跟踪误差,对壁板的第1阶模态抑制具有良好的控制效果和鲁棒性.
In order to solve the problem that the minimum control synthesis (MCS) algorithm lacks robustness under fast perturbation and the LQR is prone to instability under nonlinear perturbation, an adaptive gain compensation function is constructed. The standard MCS algorithm is improved.A new strategy based on LQR-IMCS algorithm is proposed and the stability of the system is verified by Popov theory.According to the first order vibration Modal as the object of study, random perturbation and high-order harmonic perturbation are respectively applied.The simulation and experimental results show that this method has faster convergence speed and smaller tracking error than the standard MCS algorithm, Order modal suppression has good control effect and robustness.