论文部分内容阅读
文章针对机器视觉表面缺陷检测中不同类缺陷样本数量少和不均衡的情况,提出了用1-分类分别对单独类缺陷进行真/假分类判断的分类方法,首先对每类训练样本计算具有尺度和旋转不变的不变矩特征,再使用基于1-分类的支持向量机和RBF核函数对每一类缺陷样本生成一个超球面,然后通过二重网格搜索的方法对核函数的参数寻优,最后对实际采集的缺陷图像自动寻找缺陷位置并进行分类。实验表明,1-分类支持向量机进行缺陷分类能克服分类样本不均衡的限制,具有分类准确率高及易实现在线检测等优点。