论文部分内容阅读
基于逆动力学控制的思想,提出一种RBF神经网络逆控制与PID控制相结合的在线自学习控制方案。辨识器采用RBF神经网络结构和最近邻聚类算法,实现了对系统逆动力学模型的动态辨识。并将辨识模型作为控制器模型,与被控对象串联,构成一个动态伪线性对象,从而使非线性对象的控制问题转换为线性对象的控制问题。仿真实验证明该控制策略不仅能使系统具有良好的动态跟踪性能和抗干扰能力,而且具有较强的鲁棒性。