论文部分内容阅读
在大数据时代,交通信息成为网络数据量最大的数据来源之一,智能交通成为必然需求.车牌识别是智能交通的基础,可广泛应用于车库管理、交通监控等工程中,然而识别的准确率还有待加强,已有算法对于字母、数字的识别准确率都非常高,而对于中国特有的汉字识别却效果不佳.提出用受限玻尔兹曼机组成的深信度网络算法来识别车牌字符,大大提升了汉字识别的准确率,使准确率达到99.44%.