论文部分内容阅读
<正> §1.引言两个周期函数的和、差、积、商是否仍为周期函数?这是一个值得讨论的问题。对于两个具有同一周期t的函数f(x)和g(x),显然它们的和、差、积、商均为以t为周期的函数。这个条件等价于函数f(x)有一周期t1与g(x)的某一周期t2是可公度的,即t1/t2为有理数。事实上,若f(x)与g(x)有同一周期t,则t/t=1是有理数;反之,若f(x)的周期t1与g(x)的周期t2有t1/t2=m/n(m和n均为整数),则t=nt1=mt2便是它们的公共周期。自然要问:要使两个周期函数的和(或差、积、商)仍为周期函数,是否它们必须有可公度之周期? 关于连续函数,书[1]中指出了(但未证明)下面的结论: 连续周期函数f(x)和g(x)的和仍为周期函数的