论文部分内容阅读
面部表情识别是地铁、火车站、机场等复杂环境中安检监控的重要任务,通过识别监控图像中行人的面部表情可以筛选出可疑分子。针对因监控图像模糊和面部表情拍摄不全而引起的识别准确率低等问题,提出一种改进的Inception V4面部表情识别算法,改进Inception V4的网络结构,使其更好地适应面部表情识别任务。基于深度学习中的Tensorflow平台对面部表情类数据进行训练,在面部表情验证集上进行测试,在输入图像为299×299时,识别准确率高达97.9%,改进后的算法在保证识别精度的同时,降低表情在类