Adversarial network embedding using structural similarity

来源 :计算机科学前沿 | 被引量 : 0次 | 上传用户:zhongjcrazytbag
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Network embedding which aims to embed a given network into a low-dimensional vector space has been proved effective in various network analysis and mining tasks such as node classification,link prediction and network visualization.The emerging network embedding methods have shifted of emphasis in utilizing mature deep learning models.The neuralnetwork based network embedding has become a mainstream solution because of its high efficiency and capability of preserving the nonlinear characteristics of the network.In this paper,we propose Adversarial Network Embedding using Structural Similarity (ANESS),a novel,versatile,low-complexity GANbased network embedding model which utilizes the inherent vertex-to-vertex structural similarity attribute of the network.ANESS learns robustness and effective vertex embeddings via a adversarial training procedure.Specifically,our method aims to exploit the strengths of generative adversarial networks in generating high-quality samples and utilize the structural similarity identity of vertexes to learn the latent representations of a network.Meanwhile,ANESS can dynamically update the strategy of generating samples during each training iteration.The extensive experiments have been conducted on the several benchmark network datasets,and empirical results demonstrate that ANESS significantly outperforms other state-of-theart network embedding methods.
其他文献
信息化技术的运用在小学课堂里已经十分常见.信息化教学以其特有的生动性、直观、趣味性被广大教师和学生所接受.课堂教学由一块单薄的黑板转变为由幻灯片、视频影音多维互动
  神经生物力学揭示神经组织在力-形变及损伤-生物电活动过程中的形态与能量转化规律,在神经系统的发育、生理功能发挥以及疾病过程中起重要的作用。由于神经组织结构与组分
会议
会议
会议
原发性震颤(ET)是一种常见的运动障碍疾病,其主要临床表现为双上肢4~12 Hz动作性震颤。目前ET治疗的传统药物主要包括β受体阻滞剂、抗癫痫药物、苯二氮n 类药物等,但传统药
复习课是小学数学教学的重要组成部分,在小学数学复习课教学中,引入稚化思维能够更好的尊重学生在课堂中的主体地位,教师站在学生的角度上思考问题,复习课教学效果更好.因此,
会议
会议