论文部分内容阅读
根据电力市场负荷信息,结合相关历史数据与资料,分析电力市场的负荷走势,应用Matlab神经网络工具箱的信息处理技术,预测未来各月的负荷,为决策人员提供及时、科学的决策信息.应用相应的隶属度来描述负荷与影响负荷因素之间的关系.对安徽某地区的月负荷数据进行了具体计算,结果表明该方法的可行性和有效性.