论文部分内容阅读
支持向量机是一种基于统计学习理论的新型机器学习方法,它具有在训练样本很少的情况下达到很好的分类效果的优点。把支持向量机技术应用于齿轮故障诊断,通过预先使用局部、全局核函数支持向量机的分类结果适当选取各自在混合函数中的权重,来作为混合核函数进行支持向量机分类。实验和数据分析证明,使用混合核的支持向量机比单独使用全局或局部核函数的分类效果要好。