论文部分内容阅读
High brightness of SSRF brings about synchrotron radiation security problems, which will be solved in physics design. The main radiations are generated from bending magnets and insertion devices. Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation, the arrangements of photon absorbers, diaphragms and other vacuum components need to be treated distinctively. In addition, SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited. Hence, beam orbit in the bending magnets and IDs are also restricted by the threshold. The orbit restriction is calculated and helps us to arrange the vacuum components. In this paper, beam orbit distortion restricted by interlock protection threshold, radiation power, radiation angle and illuminating area are calculated. From the calculation results, the physics designs in manufacture and installation vacuum components are put forward. By commissioning, it is shown that physics requirements are met rigidly in the engineering process.
High brightness of SSRF brings about synchrotron radiation security problems, which will be solved in physics design. The main radiations are generated from bending magnets and insertion devices. Since the fact that radiation power and radiating area are different in these two kinds of synchrotron radiation, the arrangements of photon absorbers, diaphragms and other vacuum components need to be treated distinctively. In addition, SSRF interlock protection threshold is defined and the beam orbit in the straight line is limited by the threshold. The orbit restriction is calculated and helps us to arrange the vacuum components. In the paper, beam orbit distortion restricted by interlock protection threshold, radiation power, radiation angle and illuminating area are calculated. in manufacture and installation vacuum components are put forward. By commissioning, it is sh own that physics requirements are met rigidly in the engineering process.