航拍视频车辆检测目标关联与时空轨迹匹配

来源 :交通信息与安全 | 被引量 : 0次 | 上传用户:huier0001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高解析度轨迹数据蕴含丰富车辆行驶与交通流时空信息。为从航拍视频中提取车辆轨迹,构建了车辆检测目标跨帧关联与轨迹匹配融合方法。采用卷积神经网络YOLOv5构建视频全域车辆目标检测,提出车辆动力学与轨迹置信度约束下跨帧目标关联算法,建立了基于最大相关性的断续轨迹匹配与融合构建算法,实现轨迹车辆唯一编号。将轨迹从图像坐标转换为车道基准下Frenet坐标,构建集合经验模态分解(EEMD)模型进行轨迹数据噪声消除。采用南京市快速路无人机拍摄的2组开源航拍视频,涵盖拥堵与自由流交通状态,对轨迹提取算法进行效果测
其他文献
为了从社交网络数据中挖掘出交通突发事件,研究了基于机器学习的文本识别方法。通过关键词和地点定位,利用网页爬虫“Beautiful Soup”爬取到原始文本。采用正则匹配、重复度
车辆在附着系数较小的圆曲线路段转向时,轮胎会处于非线性区内工作,此时基于线性理论的侧向稳定性分析方法会产生较大误差。建立6自由度非线性车辆系统模型,分析其处于非线性