基于用户行为的情感影响力和易感性学习

来源 :计算机学报 | 被引量 : 0次 | 上传用户:wjh75
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在不同情感极性上建模用户间的影响力是观点形成和病毒式营销的一个关键问题.已有工作将用户间影响力直接定义在用户对上,无法刻画未观测到用户对之间的关联关系,造成用户影响力学习的过拟合问题.此外,目前尚无针对不同情感极性的用户间影响力建模的有效方法.因此,该文提出一种融合情感因素的用户分布式表达模型.该模型首先构建两个低维参数矩阵度量在不同情感极性上传播者的影响力和接受者的易感性,然后通过生存分析模型刻画级联的传播行为,最后利用负采样方法解决模型中存在正负例严重不平衡的问题.基于带有情感观点的微博转发所形成级联
其他文献
近年来,在研究人脸对齐问题上提出了许多高效、精确的算法.其中,许多算法都采用平均脸作为初始化形状,然后采用不同的方法对人脸的最终形状进行预测,这些算法在人脸表情、头部姿势、光照差异较大的情况下没有很好的鲁棒性.文中提出基于平均脸使用局部形状组合模型来构建一个更准确的人脸(组合脸).局部形状组合模型首先根据人脸基准点的分布特点把人脸形状划分为脸部轮廓、眉毛、眼睛、鼻子、嘴巴这5个部分,然后利用平均脸
随着互联网规模不断扩大,当前的网络为了能够支持最大的用户访问量并且能够同时保证服务质量,出现了过度供给的情况,正是这种过度供给的现象导致能耗问题日益严重.因此,以降
自适应的调整云应用所占用的资源是一种有效的保障云应用性能的方法,但传统的决策方法面向基于服务的系统(Service-Based System,SBS)时会存在一些问题,例如基于应用系统性能模
现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objectiv
情感智能是人工智能的重要发展方向,随着人工智能的迅速发展,情感智能已成为当前人机交互领域的研究热点.语音情感是人们相互情感交流最直接、最高效的途径,越来越多的研究者
随着半导体工艺的发展,处理器集成的片上缓存越来越大,传统存储器面临着存储密度低和漏电功耗高等问题日益严峻.近年来,新型非易失性存储技术展现出漏电功耗低、存储密度高和