论文部分内容阅读
摘要: 以“十一五”和“十二五”期间的A2/O升级改造技术成果为基础, 结合当前运行良好且具有代表性的改良A2/O工艺, 从原位优化改造和深度处理等方面总结了高排放标准下城镇污水厂A2/O工艺升级改造的技术对策. 介绍了具有代表性的A2/O升级改造示范工程的运行情况, 并对A2/O工艺的优化和推广使用提供建议.
关键词: 高排放标准; 城镇污水厂; A2/O; 升级改造; 工程示范
中图分类号: X522 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.007
A review of the upgrading technology for the A2/O process of municipal wastewater treatment plants under high discharge standards in China
WEI Zheng1,2,3,4, YANG Yanmei1,2,3,4, WENG Rui1,2,3,4, HE Yan1,2,3,4, HUANG Minsheng1,2,3,4
(1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2. Institute of EcoChongming, Shanghai 202162, China; 3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200041, China; 4. Technology Innvation Center for Land Spatial EcoRestoration in Metropolitan Area(Ministry of Natural Resources), Shanghai 200062, China)
Abstract: This paper provides an overview of the technical achievements in A2/O upgrading during the 11th and 12th Five-Year Plans as well as the current successful operation of the improved A2/O process. We summarize the measures used for upgrading the A2/O process of municipal wastewater treatment plants under high discharge standards with respect to in-situ optimization and advanced treatment. Finally, we review the operating state of representative A2/O upgrade demonstration projects and offer suggestions for optimization and promotion of the A2/O process.
Keywords: high discharge standard; municipal wastewater treatment plant; A2/O; upgrading; demonstration project
0 引 言
城镇污水厂在水污染预防和水环境保护方面承担着重要角色, 也是城镇可持续发展中重要的组成部分[1]. 在2015年《水污染防治行动计划》和2019年《城镇污水处理提质增效三年行动方案(2019—2021年)》等一系列水环境政策实施的大背景下, 全国重点区域及流域均对污水处理提出了更高要求,高排放标准下许多城镇污水厂都面临着提标改造的现实需求. A2/O(厌氧—缺氧—好氧)工艺因其技术的成熟性和运行的稳定性而成为我国城镇污水厂的主流工艺[2-3]. 然而, 由于传统A2/O工艺存在碳源竞争、泥龄矛盾和回流污泥中硝酸盐及溶解氧(DO)残余对厭氧释磷的干扰, 特别是我国污水厂普遍存在进水低碳氮比(C/N)[4]、冬季低温硝化性能下降等问题, 致使传统A2/O工艺已经难以满足当前的高排放标准要求[5].
为了满足更加严格的排放标准, 削减污染物的排放, 国内外大多数污水厂都进行了升级改造. 国外污水厂升级改造工作开始得较早, 升级改造前的工艺多为传统活性污泥法, 改造措施多采用投加悬浮填料[6-8]、耦合膜生物反应器[9]、增设生物滤池和人工湿地等深度处理工艺[10-12]. 相比较之下我国污水厂提标改造开始得较晚, 集中在“十一五”和“十二五”时期, 现行的升级改造措施和国外的有较多相似之处.
因此, 本研究以“十一五”和“十二五”水专项相关研究成果为基础, 结合现有运行良好的A2/O改造工艺, 系统总结了高排放标准下城镇污水厂A2/O工艺升级改造技术优化方法, 为我国城镇污水厂提标增效工程的有效实施提供技术支撑. [ 5 ]周国标, 周鹏飞, 雷睿, 等. 传统A2/O城市污水处理中存在的工艺问题及其优化控制策略 [J]. 水处理技术, 2017, 43(6): 11-17.
[ 6 ]Al-SHAREKH H A, HAMODA M F. Removal of organics from wastewater using a novel biological hybrid system [J]. Water Science and Technology, 2001, 43: 321-326.
[ 7 ]ANDREOTTOLA G, FOLADORI P, RAGAZZI M, et al. Dairy wastewater treatment in a moving bed biofilm reactor [J]. Water Science and Technology, 2002, 45(12): 321-328.
[ 8 ]SRIWIRIYARAT T, RANDALL C W. Performance of IFAS wastewater treatment processes for biological phosphorus removal [J]. Water Research, 2005, 39(16): 3873-3884.
[ 9 ]MALPEI F, BONOMO L, ROZZI A. Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane bioreactor for effluent reuse [J]. Water Science and Technology, 2003, 47(10): 33-39.
[10]TANNER C C, SUKIAS J P S. Linking pond and wetland treatment: Performance of domestic and farm systems in New Zealand [J]. Water Science and Technology, 2003, 48(2): 331-339.
[11]MELICZ Z. Partial nitrification in a high-load activated sludge system by biofilter backwash water recirculation [J]. Water Science and Technology, 2003, 47(11): 93-99.
[12]JOBBAGY A, TARDY G M, LITERATHY B. Enhanced nitrogen removals in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant [J]. Water Science and Technology, 2002, 50(7): 1-8.
[13]國家环境保护总局. GB 18918—2002, 城镇污水处理厂污染物排放标准 [S]. 北京: 中国环境出版社, 2003.
[14]江苏省生态环境厅. 关于发布《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》的通知 [Z]. 2018-05-18.
[15]浙江省生态环境厅. 城镇污水处理厂主要水污染物排放标准(DB 33/2169—2018) [Z]. 2018-12-17.
[16]安徽省生态环境厅. 巢湖流域城镇污水处理厂和工业行业主要水污染物排放限值(DB 34/2710—2016)(皖环发〔2016〕56号) [Z]. 2016-11-04.
[17]昆明市市场监督管理局. 昆明市地方标准发布公告2020年标字第2号 [Z]. 2020-04-17.
[18]ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China [J]. Environment International, 2016, 92/93: 11-22.
[19]HE Y, ZHU Y S, CHEN J H, et al. Assessment of energy consumption of municipal wastewater treatment plants in China [J]. Journal of Cleaner Production, 2019, 228: 399-404.
[20]JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for highrate nitrogen removal [J]. Environmental Science & Technology, 2019, 53(3): 1258-1268.
[21]MARQUES R, RIBERA-GUARDIA A, SANTOS J, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes [J]. Water Research, 2018, 137: 262-272. [22]ILIES P, MAVINIC D S. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia lanfill leachate [J]. Water Research, 2001, 35: 2065-2072.
[23]SUNDARESAN N, PHILIP L. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures [J]. Water Science and Technology, 2008, 58: 819-830.
[24]路俊玲, 陳慧萍, 肖琳. 低温反硝化菌—施氏假单胞菌N3的筛选及脱氮性能 [J]. 环境科学, 2018, 39(12): 5612-5619.
[25]YAO S, NI J, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 [J]. Bioresource Technology, 2013, 139: 80-86.
[26]马宁, 汪浩, 刘操, 等. 污水厂提标改造中A2/O工艺研究与应用趋势 [J]. 中国给水排水, 2016, 32(20): 29-33.
[27]景香顺, 李鑫玮, 张晓红, 等. 低碳源市政污水处理优化运行的研究与工程应用 [J]. 给水排水, 2019, 55(11): 33-37.
[28]王佳伟, 郑江, 周军, 等. 基于碳源需求的A2/O工艺分段进水研究 [J]. 中国给水排水, 2010, 26(11): 47-50.
[29]朱云鹏, 彭永臻, 王继苗, 等. 改良A2/O分段进水工艺用于污水厂升级改造 [J]. 中国给水排水, 2012, 28(7): 22-26+31.
[30]沈晓铃, 冯成军. 宜兴市和桥污水处理厂提标及扩建工程设计 [J]. 给水排水, 2016, 52(2): 41-44.
[31]杨敏, 郭兴芳, 孙永利, 等. 某园区污水处理厂问题诊断与优化运行措施 [J]. 给水排水, 2020, 56(2): 57-62.
[32]罗玉龙, 李燕敏, 李琳, 等. 污泥水解上清液作为GS系统脱氮除磷碳源研究 [J]. 环境科学与技术, 2016, 39(10): 118-122.
[33]HUANG Z J, KONG F L, LI Y, et al. Advanced treatment of effluent from municipal wastewater treatment plant by strengthened ecological floating bed [J]. Bioresource Technology, 2020, 309: 123358.
[34]赵薇, 陈男, 刘永杰, 等. 以超声波破解剩余污泥为碳源强化污水脱氮 [J]. 环境工程, 2019, 37(3): 44-49.
[35]黄胡林, 付新梅, 周正. 秸秆发酵液作污水反硝化脱氮外加碳源的潜能研究 [J]. 工业水处理, 2019, 39(5): 42-45.
[36]刘加强, 李昂, 李莹, 等. 改良A2/O在城市污水处理厂提标改造中的应用 [J]. 水处理技术, 2018, 44(12): 137-140.
[37]李诚, 顾悦, 陈凡阵. 天津某污水厂A2/O工艺提标改造工程实践 [J]. 供水技术, 2019, 13(1): 43-45.
[38]唐凯峰, 黄羽, 赵乐军. 强化组合生物脱氮工艺在污水处理厂提标扩建中的应用 [J]. 给水排水, 2019, 55(6): 22-25.
[39]白华清, 郑爽, 李瑞, 等. 基于A2/O的MBBR工艺污水厂设计及运行效果 [J]. 中国给水排水, 2019, 35(24): 56-61.
[40]张雯, 石建会, 周亚旭, 等. 西安市某污水处理厂升级改造工程设计与运行 [J]. 给水排水, 2015, 51(8): 48-50.
[41]瞿露, 张华伟. 重庆地区A-A2/O工艺污水处理厂提标改造工程实例 [J]. 中国给水排水, 2019, 35(6): 72-75+88.
[42]陈秀成. 嘉兴联合污水处理厂提标改造工程设计及经验总结 [J]. 中国给水排水, 2020, 36(4): 47-52.
[43]高飞亚, 郭庆英, 余浩, 等. 反硝化深床滤池在一级A提标项目中的应用及运行效果 [J]. 中国给水排水, 2019, 35(6): 63-66.
[44]顾佳华, 赵金辉, 王洋洋, 等. 人工湿地用于城市污水厂尾水深度处理及其脱氮效能强化研究 [J]. 现代化工, 2020, 40(3): 64-66.
[45]黄霞, 左名景, 薛涛, 等. 膜生物反应器脱氮除磷工艺处理城市污水的工程应用[J]. 膜科学与技术, 2011, 31(3): 223-227.
(责任编辑: 张 晶)
关键词: 高排放标准; 城镇污水厂; A2/O; 升级改造; 工程示范
中图分类号: X522 文献标志码: A DOI: 10.3969/j.issn.1000-5641.2021.04.007
A review of the upgrading technology for the A2/O process of municipal wastewater treatment plants under high discharge standards in China
WEI Zheng1,2,3,4, YANG Yanmei1,2,3,4, WENG Rui1,2,3,4, HE Yan1,2,3,4, HUANG Minsheng1,2,3,4
(1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; 2. Institute of EcoChongming, Shanghai 202162, China; 3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200041, China; 4. Technology Innvation Center for Land Spatial EcoRestoration in Metropolitan Area(Ministry of Natural Resources), Shanghai 200062, China)
Abstract: This paper provides an overview of the technical achievements in A2/O upgrading during the 11th and 12th Five-Year Plans as well as the current successful operation of the improved A2/O process. We summarize the measures used for upgrading the A2/O process of municipal wastewater treatment plants under high discharge standards with respect to in-situ optimization and advanced treatment. Finally, we review the operating state of representative A2/O upgrade demonstration projects and offer suggestions for optimization and promotion of the A2/O process.
Keywords: high discharge standard; municipal wastewater treatment plant; A2/O; upgrading; demonstration project
0 引 言
城镇污水厂在水污染预防和水环境保护方面承担着重要角色, 也是城镇可持续发展中重要的组成部分[1]. 在2015年《水污染防治行动计划》和2019年《城镇污水处理提质增效三年行动方案(2019—2021年)》等一系列水环境政策实施的大背景下, 全国重点区域及流域均对污水处理提出了更高要求,高排放标准下许多城镇污水厂都面临着提标改造的现实需求. A2/O(厌氧—缺氧—好氧)工艺因其技术的成熟性和运行的稳定性而成为我国城镇污水厂的主流工艺[2-3]. 然而, 由于传统A2/O工艺存在碳源竞争、泥龄矛盾和回流污泥中硝酸盐及溶解氧(DO)残余对厭氧释磷的干扰, 特别是我国污水厂普遍存在进水低碳氮比(C/N)[4]、冬季低温硝化性能下降等问题, 致使传统A2/O工艺已经难以满足当前的高排放标准要求[5].
为了满足更加严格的排放标准, 削减污染物的排放, 国内外大多数污水厂都进行了升级改造. 国外污水厂升级改造工作开始得较早, 升级改造前的工艺多为传统活性污泥法, 改造措施多采用投加悬浮填料[6-8]、耦合膜生物反应器[9]、增设生物滤池和人工湿地等深度处理工艺[10-12]. 相比较之下我国污水厂提标改造开始得较晚, 集中在“十一五”和“十二五”时期, 现行的升级改造措施和国外的有较多相似之处.
因此, 本研究以“十一五”和“十二五”水专项相关研究成果为基础, 结合现有运行良好的A2/O改造工艺, 系统总结了高排放标准下城镇污水厂A2/O工艺升级改造技术优化方法, 为我国城镇污水厂提标增效工程的有效实施提供技术支撑. [ 5 ]周国标, 周鹏飞, 雷睿, 等. 传统A2/O城市污水处理中存在的工艺问题及其优化控制策略 [J]. 水处理技术, 2017, 43(6): 11-17.
[ 6 ]Al-SHAREKH H A, HAMODA M F. Removal of organics from wastewater using a novel biological hybrid system [J]. Water Science and Technology, 2001, 43: 321-326.
[ 7 ]ANDREOTTOLA G, FOLADORI P, RAGAZZI M, et al. Dairy wastewater treatment in a moving bed biofilm reactor [J]. Water Science and Technology, 2002, 45(12): 321-328.
[ 8 ]SRIWIRIYARAT T, RANDALL C W. Performance of IFAS wastewater treatment processes for biological phosphorus removal [J]. Water Research, 2005, 39(16): 3873-3884.
[ 9 ]MALPEI F, BONOMO L, ROZZI A. Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane bioreactor for effluent reuse [J]. Water Science and Technology, 2003, 47(10): 33-39.
[10]TANNER C C, SUKIAS J P S. Linking pond and wetland treatment: Performance of domestic and farm systems in New Zealand [J]. Water Science and Technology, 2003, 48(2): 331-339.
[11]MELICZ Z. Partial nitrification in a high-load activated sludge system by biofilter backwash water recirculation [J]. Water Science and Technology, 2003, 47(11): 93-99.
[12]JOBBAGY A, TARDY G M, LITERATHY B. Enhanced nitrogen removals in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant [J]. Water Science and Technology, 2002, 50(7): 1-8.
[13]國家环境保护总局. GB 18918—2002, 城镇污水处理厂污染物排放标准 [S]. 北京: 中国环境出版社, 2003.
[14]江苏省生态环境厅. 关于发布《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》的通知 [Z]. 2018-05-18.
[15]浙江省生态环境厅. 城镇污水处理厂主要水污染物排放标准(DB 33/2169—2018) [Z]. 2018-12-17.
[16]安徽省生态环境厅. 巢湖流域城镇污水处理厂和工业行业主要水污染物排放限值(DB 34/2710—2016)(皖环发〔2016〕56号) [Z]. 2016-11-04.
[17]昆明市市场监督管理局. 昆明市地方标准发布公告2020年标字第2号 [Z]. 2020-04-17.
[18]ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China [J]. Environment International, 2016, 92/93: 11-22.
[19]HE Y, ZHU Y S, CHEN J H, et al. Assessment of energy consumption of municipal wastewater treatment plants in China [J]. Journal of Cleaner Production, 2019, 228: 399-404.
[20]JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for highrate nitrogen removal [J]. Environmental Science & Technology, 2019, 53(3): 1258-1268.
[21]MARQUES R, RIBERA-GUARDIA A, SANTOS J, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes [J]. Water Research, 2018, 137: 262-272. [22]ILIES P, MAVINIC D S. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia lanfill leachate [J]. Water Research, 2001, 35: 2065-2072.
[23]SUNDARESAN N, PHILIP L. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures [J]. Water Science and Technology, 2008, 58: 819-830.
[24]路俊玲, 陳慧萍, 肖琳. 低温反硝化菌—施氏假单胞菌N3的筛选及脱氮性能 [J]. 环境科学, 2018, 39(12): 5612-5619.
[25]YAO S, NI J, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2 [J]. Bioresource Technology, 2013, 139: 80-86.
[26]马宁, 汪浩, 刘操, 等. 污水厂提标改造中A2/O工艺研究与应用趋势 [J]. 中国给水排水, 2016, 32(20): 29-33.
[27]景香顺, 李鑫玮, 张晓红, 等. 低碳源市政污水处理优化运行的研究与工程应用 [J]. 给水排水, 2019, 55(11): 33-37.
[28]王佳伟, 郑江, 周军, 等. 基于碳源需求的A2/O工艺分段进水研究 [J]. 中国给水排水, 2010, 26(11): 47-50.
[29]朱云鹏, 彭永臻, 王继苗, 等. 改良A2/O分段进水工艺用于污水厂升级改造 [J]. 中国给水排水, 2012, 28(7): 22-26+31.
[30]沈晓铃, 冯成军. 宜兴市和桥污水处理厂提标及扩建工程设计 [J]. 给水排水, 2016, 52(2): 41-44.
[31]杨敏, 郭兴芳, 孙永利, 等. 某园区污水处理厂问题诊断与优化运行措施 [J]. 给水排水, 2020, 56(2): 57-62.
[32]罗玉龙, 李燕敏, 李琳, 等. 污泥水解上清液作为GS系统脱氮除磷碳源研究 [J]. 环境科学与技术, 2016, 39(10): 118-122.
[33]HUANG Z J, KONG F L, LI Y, et al. Advanced treatment of effluent from municipal wastewater treatment plant by strengthened ecological floating bed [J]. Bioresource Technology, 2020, 309: 123358.
[34]赵薇, 陈男, 刘永杰, 等. 以超声波破解剩余污泥为碳源强化污水脱氮 [J]. 环境工程, 2019, 37(3): 44-49.
[35]黄胡林, 付新梅, 周正. 秸秆发酵液作污水反硝化脱氮外加碳源的潜能研究 [J]. 工业水处理, 2019, 39(5): 42-45.
[36]刘加强, 李昂, 李莹, 等. 改良A2/O在城市污水处理厂提标改造中的应用 [J]. 水处理技术, 2018, 44(12): 137-140.
[37]李诚, 顾悦, 陈凡阵. 天津某污水厂A2/O工艺提标改造工程实践 [J]. 供水技术, 2019, 13(1): 43-45.
[38]唐凯峰, 黄羽, 赵乐军. 强化组合生物脱氮工艺在污水处理厂提标扩建中的应用 [J]. 给水排水, 2019, 55(6): 22-25.
[39]白华清, 郑爽, 李瑞, 等. 基于A2/O的MBBR工艺污水厂设计及运行效果 [J]. 中国给水排水, 2019, 35(24): 56-61.
[40]张雯, 石建会, 周亚旭, 等. 西安市某污水处理厂升级改造工程设计与运行 [J]. 给水排水, 2015, 51(8): 48-50.
[41]瞿露, 张华伟. 重庆地区A-A2/O工艺污水处理厂提标改造工程实例 [J]. 中国给水排水, 2019, 35(6): 72-75+88.
[42]陈秀成. 嘉兴联合污水处理厂提标改造工程设计及经验总结 [J]. 中国给水排水, 2020, 36(4): 47-52.
[43]高飞亚, 郭庆英, 余浩, 等. 反硝化深床滤池在一级A提标项目中的应用及运行效果 [J]. 中国给水排水, 2019, 35(6): 63-66.
[44]顾佳华, 赵金辉, 王洋洋, 等. 人工湿地用于城市污水厂尾水深度处理及其脱氮效能强化研究 [J]. 现代化工, 2020, 40(3): 64-66.
[45]黄霞, 左名景, 薛涛, 等. 膜生物反应器脱氮除磷工艺处理城市污水的工程应用[J]. 膜科学与技术, 2011, 31(3): 223-227.
(责任编辑: 张 晶)