论文部分内容阅读
传统的模糊C-均值聚类(FCM)算法只考虑了图像灰度信息,未考虑图像的邻域信息,抗噪性能不够理想.为了充分利用图像空间信息,提出一种结合马尔可夫随机场(MRF)的自适应加权FCM改进算法.该算法根据局部密度判断像素在其窗口邻域范围内的离散种类,将MRF空间约束场和隶属度场的权重根据像素离散种类进行自适应变化,在消除噪声影响的同时,尽可能保留弥散张量成像(DTI)的图像细节信息.实验结果表明:该算法可以准确分割DTI图像,得到边缘清晰且细节信息保留良好的分割结果,与FCM算法以及MRF和FCM融合算法