论文部分内容阅读
为了提高基于视频序列的表情识别精度,在KNN-SVM算法的基础上提出局部SVM分类机制,并将其用于视频序列中的表情分类.对于一个待分类的几何特征样本,首先在训练集中寻找该样本的k个近邻样本,然后根据这k个近邻样本和待分类样本的相似度信息,重新构建局部最优的SVM分类决策超平面,用来对该几何特征样本进行分类.在Cohn-Kanade数据库中的对比实验表明,该分类器有效地提高了表情分类的精度.