论文部分内容阅读
针对传统的基于反向传播(BP)神经网络室内定位算法存在着低精度和慢收敛问题,且考虑到室内环境复杂,通常存在多径效应,无法使用信号强度衰减测距模型进行精确定位,提出一种改进的人工鱼群优化的BP神经网络WiFi指纹室内定位算法.利用人工鱼群觅食和寻优方式来提高全局寻优搜索的速度和能力,采用改进的人工鱼群算法(IAFSA)优化选取室内定位BP神经网络的权值和阈值,有效避免了传统BP神经网络的预测值易陷入局部最优的缺点,同时利用高斯滤波对信号进行去噪处理,建立采样点获取到的信号强度值(RSSI)与位置坐标的