论文部分内容阅读
选取其关键部件—喷口加力调节器作为故障诊断研究对象,提出了一种基于动态主元分析(DPCA)和广义回归神经网络(GRNN)相结合的喷口加力调节器故障诊断方法。在燃气轮机专用试验平台对其进行试验,采集喷口加力调节器的高压转子转速、低压转子转速、燃油油量、燃油耗量等参数原始数据,对其进行预处理,并采用DPCA方法对其进行动态主元分析,提取其不同健康状态的主元,构建特征向量,采用特征向量构建GRNN神经网络故障诊断模型,并通过测试数据对该方法的有效性进行试验验证。为表明该方法的有效性,采用了基于GRNN和基于DP